
Fhlintstone Developers Guide

Table of Contents
1. Introduction. 2

2. Getting Started . 3

3. Toolkit . 4

3.1. HAPI FHIR. 4

3.2. Logging . 4

3.3. Dependency Injection . 4

3.4. Lombok . 4

3.5. JavaPoet. 5

3.6. picocli. 5

3.7. Test Automation . 5

3.8. Spotless . 5

3.9. Asciidoctor . 5

4. How-To…. 6

4.1. Installing SUSHI. 6

4.2. Installing Firely Terminal . 7

4.3. Creating Test Packages . 7

5. Glossary . 9

1

1. Introduction
Fhlintstone is a Java code generator to support HL7 FHIR developers using the popular HAPI FHIR
framework. Based on one or multiple NPM Packages containing the various definitions, it can be
used to

• generate Java enums for ValueSets

• generate Java classes to implement custom resource and extension classes for
StructureDefinitions and

• facilitate handling profiles and extensions by providing builders tailored to the specific FHIR
adaptations described by the package contents.

This document is intended to help developers who want to contribute to the Fhlintstone software
itself. If you only want to use Fhlintstone and not extend or debug the tool yourself, this is not the
document you’re looking for - you should find everything you need in the Users Manual.

This document assumes you’re already familiar with the basics of Java development - if you’re not,
Fhlintstone is probably not a good project to get started due to its high complexity. The same holds
true for HL7 FHIR - you should have at least some working FHIR knowledge and be able to read and
understand ValueSet and StructureDefinition resources.

2

https://hapifhir.io/hapi-fhir/docs/model/custom_structures.html
https://hapifhir.io/hapi-fhir/docs/model/profiles_and_extensions.html

2. Getting Started
In order to work with the Fhlintstome sources, you only need a few basic requirements:

• a Java JDK in Version 21 or newer,

• a working Maven installation,

• git and

• an IDE of your choice.

With this, you should be able to check out the source code from the main repository or your own
fork of this repository. The project can be built with a simple mvn clean install or from your
preferred IDE. The first build process will - as usual - probably take some time because a number of
dependencies will be installed. Once this has happened, a complete build process will still take a
few minutes due to the large number of complex automated tests.

Once you have completed these basic steps, you should be able to contribute to the Java
implementation. It is recommended that you familiarize yourself with the toolkit used by
Fhlintstone and take a look at the architectural documentation, which is distributed as a separate
document. It is also strongly recommended that you install SUSHI so that you are able to contribute
to the test data as well as the Java source code.

If you want to run a SonarQube check, we recommend disabling these rules:

ID Name Reason

java:S1135 Track uses of “TODO” tags We use a TODO with the issuer ID to mark
the places in the code where something
needs to be done.

java:S4738 Java features should be preferred to
Guava

We prefer to use an ImmutableList rather
than a List. This makes it clear that the
values cannot be changed.

java:S110 Inheritance tree of classes should not be
too deep

We are extending the HAPI FHIR libraries,
so we have to inherit from many classes.

xml:S1135 Track uses of "TODO" tags We use a TODO with the issuer ID to mark
the places in the code where something
needs to be done.

3

https://codeberg.org/Fhlintstone/fhlintstone.git

3. Toolkit
This section gives a brief overview of the external components and libraries that you should be
familiar with when working on Fhlintstone.

3.1. HAPI FHIR
Since Fhlintstone generates code that is based on HAPI FHIR, it is obvious that you should be
familiar with at least the following sections of the HAPI documentation:

• Getting Started

• Working with the FHIR model

3.2. Logging
Fhlintstone uses SLF4J. The logger should be provisioned using Lombok by using the annotation
@XSlf4j. Please make sure you add logger.entry(…) and logger.exit() for all but the most trivial
methods.

3.3. Dependency Injection
Fhlintstone uses Google Guice in combination with Eclipse Sisu for dependency injection. Note that
due to the Sisu version being currently used, you will still need to use the old annotations like
javax.inject.Named - the newer annotations like jakarta.inject.Name are not yet supported (see also
sisu issue #92),

3.4. Lombok
Project Lombok is used to reduce the amount of boilerplate code required. You should familiarize
yourself with the following annotations that are currently being used:

• stable features

◦ @Getter and @Setter with @AccessLevel

◦ @EqualsAndHashCode

◦ @NoArgsConstructor

◦ @Data

◦ @Builder and @Singular

◦ @Xslf4j

• experimental features

◦ @SuperBuilder

Please be cautious when using new experimental features - always check the support status and
possible stabilization issues in the Lombok documentation.

4

https://hapifhir.io/hapi-fhir/docs/getting_started
https://hapifhir.io/hapi-fhir/docs/model
https://www.slf4j.org/
https://github.com/google/guice
https://eclipse.dev/sisu/
https://github.com/eclipse-sisu/sisu-project/issues/92
https://projectlombok.org/
https://projectlombok.org/features/GetterSetter
https://projectlombok.org/features/GetterSetter
https://projectlombok.org/features/GetterSetter
https://projectlombok.org/features/GetterSetter
https://projectlombok.org/features/GetterSetter
https://projectlombok.org/features/EqualsAndHashCode
https://projectlombok.org/features/constructor
https://projectlombok.org/features/Data
https://projectlombok.org/features/Builder
https://projectlombok.org/features/Builder
https://projectlombok.org/features/Builder
https://projectlombok.org/features/log
https://projectlombok.org/features/experimental/SuperBuilder

3.5. JavaPoet
Fhlintstone uses JavaPoet to generate the source code. Since this is a very crucial part of the entire
operation, you should read the entire JavaPoet documentation at least once (it’s not that long).

3.6. picocli
picocli is used to implement the command line interface.

3.7. Test Automation
Fhlintstone uses JUnit 5 with a number of extensions and additions:

• Mockito to generate mock objects

• AssertJ for a more fluent test code style

• EqualsVerifier to automate tests of equals() and hashCode()

• ArchUnit to prevent violations of certain architectural principles

A few rules of thumb:

• Use either AssertJ (preferred for new tests) or classic JUnit assertions, but do not mix if possible
(for better readability and maintainability).

• Use EqualsVerifier for all data-carrying classes (not required for process classes).

• Use unit tests (…Test) to test an isolated class (i.e. mocking every surrounding object) and use
integration tests (…IT) to test the class with only partial mocking. Integration tests are
commonly used to load the test packages and ensure that the component works correctly with
the contents. This has turned out to be much more productive than attempting to mock large
parts of the HAPI framework.

3.8. Spotless
Fhlintstone uses Spotless in combination with the lambda-friendly Palantir Java Format to keep a
consistent code formatting. Please ensure to apply the style before contributing code to keep the
noise level in the changes down. The code style is applied automatically in every build process, so if
you perform a complete build and test run before creating a PR (which you most definitely should!),
this will not pose a problem.

3.9. Asciidoctor
This document and its siblings are built using Asciidoctor.

When editing the Asciidoc sources, please keep each sentence to a single line to make PR reviews
easier.

5

https://github.com/palantir/javapoet
https://picocli.info/
https://junit.org/junit5/
https://site.mockito.org/
https://assertj.github.io/doc/
https://jqno.nl/equalsverifier/
https://www.archunit.org/
https://github.com/diffplug/spotless
https://github.com/palantir/palantir-java-format
https://docs.asciidoctor.org/

4. How-To…
This section contains descriptions of individual tasks that may become relevant when contributing
to Fhlintstone.

4.1. Installing SUSHI
Fhlintstone uses FSH and SUSHI to generate resources for testing purposes.

Since SUSHI is not easily integrated into the main build process, the generated resources are kept in
the main repository. Developers should therefore be able to generate the package contents locally,
especially when creating new test packages. This section describes the process to setup the
infrastructure required to do so.

For macOS and Linux systems, it should be sufficient to follow the official installation instructions.
For Windows, the process can be a bit more involved. The following instructions assume that you
are able to use the Windows Subsystem for Linux (WSL). This has the unfortunate downside of
slowing SUSHI down, but the alternatives appear to be much more tedious to install.

1. Ensure that the base image is present (requires local admin privileges):

wsl --install -d Ubuntu

2. Install the WSL utilities:

sudo apt install -y wslu

3. Install the Java Runtime Environment:

sudo apt update
sudo apt install wget apt-transport-https gpg
wget -qO - https://packages.adoptium.net/artifactory/api/gpg/key/public | gpg
--dearmor | sudo tee /etc/apt/trusted.gpg.d/adoptium.gpg > /dev/null
echo "deb https://packages.adoptium.net/artifactory/deb $(awk -F=
'/^VERSION_CODENAME/{print$2}' /etc/os-release) main" | tee
/etc/apt/sources.list.d/adoptium.list
sudo apt update
sudo apt install temurin-21-jdk

4. Install Ruby und Jekyll:

sudo apt install ruby-full build-essential zlib1g-dev
echo '# Install Ruby Gems to ~/gems' >> ~/.bashrc
echo 'export GEM_HOME="$HOME/gems"' >> ~/.bashrc
echo 'export PATH="$HOME/gems/bin:$PATH"' >> ~/.bashrc

6

https://build.fhir.org/ig/HL7/fhir-shorthand/
https://fshschool.org/docs/sushi/
https://fshschool.org/docs/sushi/installation/

source ~/.bashrc
gem install jekyll bundler

5. Install SUSHI:

sudo apt install nodejs
npm install -g fsh-sushi

It is recommended to use Visual Studio Code with the HL7 FHIR Shorthand Extension to edit the
source files.

4.2. Installing Firely Terminal
Fhlintstone uses Firely Terminal to convert resources from JSON to XML for testing purposes.

While SUSHI can be used to create resources (instances) that can be used to test the parsing and
rendering process, it is only able to generate JSON files. Unfortunately, the HAPI implementations
for XML and JSON have shown slightly different behavior in the past, so that we need to perform
tests with both formats. To convert the instance resources contained in JSON files that were
generated with SUSHI into XML files, Firely Terminal is used. Please follow the installation
instructions on the package site. Note that these alternative installation instructions offer platform-
dependent instructions, but currently still refer to an outdated version of the .NET SDK dependency.
Make sure that you add the fhir executable to the search path.

4.3. Creating Test Packages
Fhlintstone uses NPM packages with custom-tailored resources to simulate specific conditions for
testing purposes. New test packages for specific scenarios can be added whenever required; the
process is described below. The process is relatively straightforward, although it is a lot easier to
copy an existing package and modify it than to start from scratch. Note that this description does
not cover any edge cases (like packages that are deliberately broken).

The test packages are stored in the submodule fhlintstone-test-data and packaged using the
Maven Assembly Plugin. The package files are then distributed to the various other submodules
that use the packages using the Maven Remote Resources Plugin. All of the actions described below
assume that you’re working in the base path src/main/fhir of this submodule.

CAUTION: Make sure that alls URLs and names new resources contain the new package name and
number. When copying from an existing package, ensure that you change the existing identifiers.
URL collisions between packages can lead to very confusing errors in the integration tests.

CAUTION: Use an editor that knows how Makefiles work and that doesn’t try to convert tabs into
spaces and vice versa where it shouldn’t.

1. Select the next package number available and document the package in package-list.md by
adding a line to the table with the next number and a short description.

2. Create the package directory.

7

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=FHIR-Shorthand.vscode-fsh
https://simplifier.net/downloads/firely-terminal
https://build.fhir.org/ig/HL7/fhir-shorthand/reference.html#defining-instances
https://simplifier.net/downloads/firely-terminal
https://simplifier.net/downloads/firely-terminal
https://docs.fire.ly/projects/Firely-Terminal/getting_started/InstallingFirelyTerminal.html
https://codeberg.org/Fhlintstone/fhlintstone/src/branch/master/fhlintstone-test-data
https://maven.apache.org/plugins/maven-assembly-plugin/
https://maven.apache.org/plugins/maven-remote-resources-plugin
https://codeberg.org/Fhlintstone/fhlintstone/src/branch/master/fhlintstone-test-data/src/main/fhir
https://codeberg.org/Fhlintstone/fhlintstone/src/branch/master/fhlintstone-test-data/src/main/fhir/package-list.md

3. Create the input folder input/fsh and place whatever FSH source files required into this folder.

4. Create a new file package.json with the package manifest or copy and adapt an existing
manifest.

5. Create a new file sushi-config.yaml or copy and adapt an existing SUSHI configuration.

6. Add a Makefile - preferably by copying an existing one. Make sure that all source files are listed
in the SOURCE_FILES variable.

7. Extend the PACKAGES variable in the main Makefile to include the package in the semi-automatic
build process.

8. Execute make in the base path src/main/fhir to automatically build the package contents.

9. Create a new assembly descriptor in the folder assembly (which resides on the same level as the
package folders). By convention, the assembly descriptor is named after the package it belongs
to. It is advisable to copy and adapt an existing configuration.

Note that you will have to execute the Maven build to ensure that the new package is distributed to
the other submodules and can be used for local test executions.

8

https://codeberg.org/Fhlintstone/fhlintstone/src/branch/master/fhlintstone-test-data/src/main/fhir/Makefile
https://codeberg.org/Fhlintstone/fhlintstone/src/branch/master/fhlintstone-test-data/src/main/fhir
https://maven.apache.org/plugins/maven-assembly-plugin/assembly.html

5. Glossary
Term Definition Links

CodeSystem The CodeSystem resource is used to declare the
existence of and describe a code system or code
system supplement and its key properties, and
optionally define a part or all of its content. Code
systems define which codes (symbols and/or
expressions) exist, and how they are understood.

Resource CodeSystem -
Content

Differential statement Differential statements are one of two ways to
describe the inner structure of a
StructureDefinition. Differential statements
describe only the differences that they make
relative to the base structure definition. In order
to properly understand a differential structure, it
must be applied to the structure definition on
which it is based.

Base Resource
Definitions

Extension Every element in a Resource can have extension
child elements to represent additional
information that is not part of the basic definition
of the resource. The use of extensions is what
allows the FHIR specification to retain a core
simplicity for everyone. To make the use of
extensions safe and managable, there is strict
governance applied to the definition and use of
extensions. Although any implementer can define
and use extensions, there is a set of requirements
that must be met as part of their use and
definition.

Extensibility

FHIR NPM Package A set of Resources bundled as a machine-readable
archive file. Not to be confused with FHIR
Package.

FHIR NPM Packages

FHIR Package In the context of Profiling, a group of related
adaptations that are published as a group within
an Implementation Guide. Not to be confused with
FHIR NPM Package.

Profiling FHIR

FHIR Profile A set of constraints on a Resource represented as
a StructureDefinition.

Profiling FHIR

HAPI FHIR The HAPI FHIR library is an implementation of
the HL7 FHIR specification for Java.

HAPI FHIR

HL7 FHIR Fast Healthcare Interopatbility Resources (FHIR)
are a standard for health care data exchange,
published by HL7®.

HL7 FHIR

9

https://hl7.org/fhir/codesystem.html
https://hl7.org/fhir/codesystem.html
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://www.hl7.org/fhir/extensibility.html
https://hl7.org/fhir/packages.html
https://hl7.org/fhir/profiling.html
https://hl7.org/fhir/profiling.html
https://github.com/hapifhir
https://hl7.org/fhir/

Term Definition Links

Implementation Guide A coherent and bounded set of adaptations that
are published as a single unit. Validation occurs
within the context of the Implementation Guide.

Profiling FHIR

JavaPoet JavaPoet is a Java API for generating .java`
source files.

JavaPoet (Github)

Mockito Mockito is a mocking framework that provides a
clean & simple API, resulting in readable tests
and clean verification errors.

Mockito

Resource A resource is an entity that has a known identity
by which it can be addressed, identifies itself as
one of the types of resource defined in the HL7
FHIR specification, contains a set of structured
data items as described by the definition of the
resource type and has an identified version that
changes if the contents of the resource change.

Base Resource
Definitions

Snapshot statement Snapshot statements are one of two ways to
describe the inner structure of a
StructureDefinition. Snapshot statements are a
fully calculated form of the structure that is not
dependent on any other structure.

Base Resource
Definitions

StructureDefinition A definition of a FHIR structure. This resource is
used to describe the underlying resources, data
types defined in FHIR, and also for describing
extensions and constraints on resources and data
types.

Resource
StructureDefinition -
Content

ValueSet A ValueSet resource instance specifies a set of
codes drawn from one or more code systems,
intended for use in a particular context. ValueSets
link between CodeSystems definitions and their
use in coded elements.

Resource ValueSet -
Content

10

https://hl7.org/fhir/profiling.html
https://github.com/palantir/javapoet
https://site.mockito.org/
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/valueset.html
https://www.hl7.org/fhir/valueset.html

	Fhlintstone Developers Guide
	Table of Contents
	1. Introduction
	2. Getting Started
	3. Toolkit
	3.1. HAPI FHIR
	3.2. Logging
	3.3. Dependency Injection
	3.4. Lombok
	3.5. JavaPoet
	3.6. picocli
	3.7. Test Automation
	3.8. Spotless
	3.9. Asciidoctor

	4. How-To…​
	4.1. Installing SUSHI
	4.2. Installing Firely Terminal
	4.3. Creating Test Packages

	5. Glossary

