
Fhlintstone Architectural
Documentation

Table of Contents
1. Introduction and Goals . 2

1.1. Requirements Overview . 2

1.2. Quality Goals . 3

1.3. Stakeholders. 3

2. Architecture Constraints. 4

3. Context and Scope . 5

3.1. Business Context . 5

3.2. Technical Context . 6

4. Solution Strategy. 7

4.1. Technology Decisions. 7

4.2. Top-level Decomposition. 7

4.3. Quality Goals . 7

5. Building Block View. 8

5.1. Whitebox Overall System . 8

5.2. Level 2 . 10

5.3. Level 3 . 14

6. Runtime View . 15

6.1. Maven Integration . 15

6.2. Command Line Execution . 15

6.3. Core Processor Initialization . 16

6.4. ValueSet Enum Generation . 17

6.5. StructureDefinition Class Generation . 18

7. Cross-cutting Concepts . 21

7.1. Automated Tests . 21

8. Architecture Decisions . 22

9. Quality Requirements . 23

10. Risks and Technical Debts . 24

11. Glossary . 25

1

1. Introduction and Goals
Fhlintstone is a Java code generator to support HL7 FHIR developers using the popular HAPI FHIR
framework. Based on one or multiple NPM Packages containing the various definitions, it can be
used to

• generate Java enums for ValueSets

• generate Java classes to implement custom resource and extension classes for
StructureDefinitions and

• facilitate handling profiles and extensions by providing builders tailored to the specific FHIR
adaptations described by the package contents.

The main objectives of Fhlintstone are

• to support developers by automating repetitive tasks as much as possible,

• to produce high-quality (i.e. easily human-readable) code to support debugging,

• to support FHIR profiles and packages out-of-the-box (i.e. without local adaptation) as much as
possible and

• to integrate itself into both manual and automated development workflows easily.

1.1. Requirements Overview

ID Requirement Explanation

R1 FHIR Package Support MUST be able to work with FHIR resources provided as
NPM packages.

R2 FHIR Release Support MUST support FHIR release R4. SHOULD support
releases R4B, R5 and ongoing; SHOULD NOT preclude
support of earlier releases.

R3 Code Generation MUST provide developer support by generating code as
specified by sub-requirements.

R3.1 ValueSet Enumerations MUST be able to generate a Java enum that represents a
FHIR ValueSet.

R3.2 Custom Resource
Implementation

SHOULD be able to generate a Java class that represents
a custom FHIR resource.

R3.3 Complex Extension
Implementation

MUST be able to generate a Java class that represents a
custom complex Extension.

R3.4 Builder Generation SHOULD be able to provide builders to generate
instances of FHIR objects compliant with the package
contents.

R4 Java Version Support MUST be able to generate Java compliant with Version
21.

2

https://hapifhir.io/hapi-fhir/docs/model/custom_structures.html
https://hapifhir.io/hapi-fhir/docs/model/profiles_and_extensions.html

ID Requirement Explanation

R5 Integration Capabilities MUST be able to integrate into automated build
processes.

R5.1 Maven Integration MUST provide an integration into Apache Maven
processes.

R5.1 Command Line Interface SHOULD provide a command line interface to invoke
generation manually.

R6 Configurability MUST provide support to configure output path, target
namespace and other options.

1.2. Quality Goals
The main quality goals are

• Functional Suitability: must be able to provide valuable and meaningful support to Java
developers

• Compatibility: should support as much of the FHIR standard in actual use as is reasonably
possible

• Maintainability: should be easily extensible to cover new FHIR releases or as-of-yet
unsupported FHIR structures.

Note: For product quality requirements, see Quality Requirements.

1.3. Stakeholders

Role/Name Expectations

Java / FHIR Developer …

3

2. Architecture Constraints
Fhlintstone shall be

• platform-independent, i.e. executable on the major operating systems (Linux, Windows, mac
OS)

• deterministic, i.e. produce the same output for each execution with the same input data (apart
from generation timestamps)

Fhlintstone has to conform to the following external contraints:

• FHIR resources are usually provided in NPM packages. The Java developer frequently has very
little, if any, influence on the contents of these packages. Fhlintstone has to be able to work with
a wide range of valid FHIR NPM packages.

• Multiple FHIR resources may be required to produce a single output type. Fhlintstone must be
able to resolve the dependencies and relationships between the various resources.

• FHIR resources may be distributed over several NPM packages which may or may not be
connected with explicit dependency relationships. Fhlintstone must be able to locate resources
in multiple input packages irrespective of an existing package-level dependency. Missing
package-level dependencies should be recognized and logged though.

4

3. Context and Scope

3.1. Business Context

Neighbor Description

FHIR Developer Provides FHIR packages. May be located outside the development
organization.

FHIR Package Contain ValueSets, StructureDefinitions and other FHIR Resources
that may be relevant to the developer of a FHIR application.

Java Developer Configures Fhlintstone to read the FHIR Packages and (optionally)
executes Fhlintstone to produce the Generated Source Code, either
manually or via a build tool like Maven. Develops the actual
Application Source Code by extending the Generated Source Code.

Configuration Specifies which FHIR packages to use, which target structures to
generate and where to place the Generated Source Code.

Fhlintstone Reads the Configuration and the FHIR Package(s) and produces the
Generated Source Code.

Generated Source Code Output of the Fhlintstone generation process. Can be re-generated at
any time.

5

Neighbor Description

Application Source Code Uses the Generated Source Code to provide the actuall functionality of
the target application.

Java Compiler Reads both the Generated and the Application Source Code to produce
the deliverable artifacts.

3.2. Technical Context

Interface Description

FHIR Package FHIR Packages are read from ,NPM package files (in .tgz format).

Configuration The Configuration is either provided as a separate configuration file
(for command-line execution) or as part of the build system (e.g.
Maven) configuration.

Generated Source Code The Generated Source Code is written to the file system for maximum
compatibility with both the Java compiler and other build tools as
well as the Development IDE.

6

4. Solution Strategy

4.1. Technology Decisions
Java code is to be generated, and the target framework for which code is to be generated is also
written in Java. For this reason, Java is also used for the implementation of Fhlintstone. An LTS
version current at the time of development is used.

At the start of development, Maven integration was planned as the primary use case. For this
reason—and due to the high maturity of this build framework—Maven is used to support the
software lifecycle.

Fhlintstone does not maintain its own persistent state. This ensures that a call always produces a
reproducible result that depends only on the explicitly specified input data. This ensures the
stability of the host build.

4.2. Top-level Decomposition
Since Fhlintstone is to be executed both from the command line and from a Maven build, the core
logic for analyzing FHIR structures and code generation is separated from the command line
application and the Maven integration. This also facilitates later integration into other build
systems.

4.3. Quality Goals
In order to best support the ,quality goals, the following measures are planned:

Functional suitability is ensured by maintaining a realistic example scenario in parallel with the
development of the tool. This consists of a hypothetical FHIR package and a simple but realistic
example program that demonstrates the use of the code generator and the generated classes and
ensures the usability of the generated components.

The high complexity of the FHIR standard makes it difficult to ensure comprehensive
compatibility. For this reason, we are striving to achieve a high level of compatibility while
optimizing resource requirements by continuously adapting both the automated tests and the
sample project to observations from practical use.

In addition to extensive automated testing, structural measures are planned to improve
maintainability. The release-specific aspects of the FHIR framework are separated as far as
possible from the structural analysis and code generation by an abstraction layer. Ideally, this will
allow a new FHIR version to be supported without changing the code generator. To facilitate
support for new or previously unsupported FHIR features, a multi-stage approach is chosen for
implementation: First, an internal intermediate model is generated from the FHIR structures, from
which a model of the code to be generated is then created. This model in turn controls the code
generator. This approach makes it possible to keep changes to support new features local as far as
possible. Where this is not possible, this approach offers clear traceability of the effects through the
structure of the application and better test support.

7

5. Building Block View

5.1. Whitebox Overall System

Motivation

The core of Fhlintstone contains the parts of the application that reads and evaluates the
contents of the FHIR package and generates the source code. To achieve the integration into
various calling contexts like the command line interface (CLI) or build tools like Maven, specific
adapters are provided that map the input and configuration to a context-independent
configuration.

Contained Building Blocks

Name Description

Core Core logic that contains package handling, FHIR resource
interpretation and code generation.

Command Line Interface Adapter to access core logic from the command line.

Maven Plug-In Adapter to integrate core logic into Maven build processes.

Important Interfaces

Name Description

FHIR NPM Package Files Access to the FHIR resources that describe the structures for
which code has to be generated.

8

Name Description

Configuration Control of the generation process.

Generated Source Code Output of the application.

5.1.1. Black Box: Core

This component contains the essential components of the application: access to the contents of the
FHIR NPM packages and the configuration-controlled generation of the Java sources. It fulfills all of
the requirements except R5 (Integration Capabilities). It accesses the NPM packages and the source
code to be generated directly. Configuration and invocation are performed by Java objects and
method calls at runtime.

This component is implemented as a Maven submodule fhlintstone-core of the main project.

5.1.2. Black Box: Command Line Interface

This component makes the functions of the core module available to the user for calling from the
command line. It has a compatible configuration model that can read the configuration from an
XML source file and transfer it to the internal configuration model.

This component is implemented as a Maven submodule fhlintstone-cli of the main project.

Since this is a very simply structured component, it is not broken down further in Level 2.

5.1.3. Black Box: Maven Plug-In

This component makes the functions of the core module available within a Maven build process.
The plug-in allows the configuration to be specified directly in the Maven POM. It is able to transfer
the specified settings to the internal configuration model.

This component is implemented as a Maven submodule fhlintstone-maven-plugin of the main
project.

Since this is a very simply structured component, it is not broken down further in Level 2.

5.1.4. Interface: FHIR NPM Package Files

The source resources for code generation are available in the form of FHIR NPM Packages. Both the
package format and the relevant resources (CodeSystems, ValueSets, StructureDefinitions and
others) are specified by the HL7 FHIR standard. The relevant standard sections are linked in the
glossary.

5.1.5. Interface: Configuration

For simplicity, the structure of the configuration data is kept identical across all components of the
application. The configuration is described in detail in the User Manual.

9

5.1.6. Interface: Generated Source Code

The application must generate valid Java code in accordance with the relevant specifications. For
further use, the code is written to a configurable output directory. The configured package
structure is observed.

The entire code is regenerated each time the application is executed. Existing code is not updated;
existing files are completely overwritten. The generated code is not intended to be adapted
manually; in particular, there are no protected regions in the generated code.

Files from previous executions are not automatically deleted when they are no longer needed.

5.2. Level 2

5.2.1. White Box: Core

10

Motivation

The core of the application consists of the components shown above. It uses two external
libraries that are crucial for its operation: HAPI FHIR is used to work with FHIR packages and
resources, and JavaPoet is used to generate Java source code. In addition to the actual
generators, the core contains further components to facilitate access to the FHIR structures, to
manage the FHIR NPM packages, and to control the generation process.

Contained Building Blocks

11

Name Description

Accessors Adapters to shield application from version-specific HAPI
implementations.

FHIR Tooling Additional algorithm implementations to work with FHIR
resources.

Package Handling Handling of FHIR NPM Packages and access to package contents.

Generator Modular generator subsystem.

StructureDefinition Class
Generator

Generator module to create Java classes from
StructureDefinitions.

ValueSet Enum Generator Generator module to create Java enums from ValueSets.

Process Control Configuration handling and overall control of the generation
process.

Important Interfaces

Name Description

FHIR NPM Package Files Access to the FHIR resources that describe the structures for
which code has to be generated.

Configuration Control of the generation process.

Generated Source Code Output of the application.

5.2.2. Black Box: Accessors

Fhlintstone is designed to support multiple FHIR versions (releases). For versions up to and
including R5, HAPI FHIR uses parallel inheritance structures to implement each FHIR version
separately from every other version. The accessors are used to "shield" the Fhlintstone core
application from these redundant structures. The goal is that the only components that access the
release-dependent HAPI structures directly should be the accessors contained in this component.

This component is contained in the Java package hierarchy below de.fhlintstone.accessors.

This component contains additional functional implementations that are release-dependent as well:

Resource-Level Dependency Determination

FHIR elements frequently make use of other elements. When generating code or other derived
structures, one needs to be able to identify these dependencies. This sub-component provides a
(release-dependent) visitor that is able to extract the dependency information of selected
resource types. Because this implementation needs to access the underlying HAPI classes
directly, it is part of the accessor component.

HAPI Implementation Type Access

When generating code for a specific FHIR release, the generator needs information about the
HAPI structures extended by the the generated code. For example, when producing an extended
version of the Patient resource, the generator needs to know the actual HAPI class that

12

represents the base Patient for the targeted FHIR release. The contents of this sub-component
provide this kind of access. Because this implementation needs to access the underlying HAPI
classes directly, it is part of the accessor component.

5.2.3. Black Box: FHIR Tooling

This package contains implementations of various functions that are used by the code generator to
examine FHIR structures. These functions include the generation of a dependency tree and the
conversion of the flat list of ElementDefinitions contained in a StructureDefinition into a tree
structure. This component uses the accessors and may not access the version-specific HAPI
implementations directly.

This component is contained in the Java package hierarchy below de.fhlintstone.fhir.

5.2.4. Black Box: Package Handling

FHIR profiles are provided as NPM Packages. This component contains a central registry that
maintains an index of all packages used and provides access to the resources contained within
these packages.

This component is contained in the Java package hierarchy below de.fhlintstone.packages.

5.2.5. Black Box: Generator

This component contains the code generators. Fhlintstone uses a modularized approach with
separate generators for each resource type and target structure type.

This component is contained in the Java package hierarchy below de.fhlintstone.generator.

5.2.6. Black Box: StructureDefinition Class Generator

This component contains the generator module that produces Java classes corresponding to FHIR
StructureDefinitions. The component is split into two main parts: The first part of the generator
converts the FHIR structure information into a model that can be used to produce the code
generator control model. The second part uses JavaPoet to produce Java classes corresponding to
FHIR StructureDefinitions. This part contains the actual code generator and its control model.

This component use the accessors and may not access the version-specific HAPI implementations
directly.

This component is contained in the Java package hierarchy below
de.fhlintstone.generator.structuredefinition.

5.2.7. Black Box: ValueSet Enum Generator

This component contains the generator module that produces Java enums corresponding to FHIR
ValueSets. It converts the FHIR value information into a model that can be used to produce the code
generator control model. It then uses JavaPoet to produce Java classes corresponding to FHIR
ValueSets.

13

This component use the accessors and may not access the version-specific HAPI implementations
directly.

This component is contained in the Java package hierarchy below
de.fhlintstone.generator.valueset.

5.2.8. Black Box: Process Control

This component contains the main process control of the Fhlintstone core logic. It prepares the
environment and delegates the actual code generation to the individual generator components.

For the time being, the Fhlintstone Core has its own configuration model - contained in this
component - that is mirrored by each calling component. (See issue 87 for a discussion on how
these redundant configuration models might be combined in a future version.)

5.2.9. Interface: FHIR NPM Package Files

The source resources for code generation are available in the form of FHIR NPM Packages. Both the
package format and the relevant resources (CodeSystems, ValueSets, StructureDefinitions and
others) are specified by the HL7 FHIR standard. The relevant standard sections are linked in the
glossary.

5.2.10. Interface: Configuration

The configuration is represented at this level by a Java class model, which is instantiated at runtime
by the caller and passed to the processing logic. (See issue 87 for a discussion on how these
redundant configuration models might be combined in a future version.)

5.2.11. Interface: Generated Source Code

The generated code is written to the output directories specified by the configuration using the
output method supplied by JavaPoet.

5.3. Level 3
No further breakdown of the components at level 3 has been carried out to date.

14

https://codeberg.org/Fhlintstone/fhlintstone/issues/87
https://codeberg.org/Fhlintstone/fhlintstone/issues/87

6. Runtime View

6.1. Maven Integration
This scenario describes the use of Fhlintstone when integrated into a Maven build process.

The plug-in specific configuration is injected by Maven and mapped to the core configuration. It is
then handed to the core processor where it is used to generate the output files as described below.

6.2. Command Line Execution
This scenario describes the use of Fhlintstone when called from a command line.

15

In this case, the CLI specific configuration is loaded from an XML file and mapped to the core
configuration. It is then handed to the core processor where it is used to generate the output files as
described below.

6.3. Core Processor Initialization
When the core processor is called, it initializes a number components before performing the actual
generation steps. In this phase, the configured NPM packages are read and their contents are
indexed for later access.

16

6.4. ValueSet Enum Generation
After initialization, the core processor executes the ValueSet enum generator once for each
configured ValueSet. From the FHIR resources, the constants to be incorporated into the enum are
determined. The collected information is then passed to a code emitter that controls the actual code
generation using JavaPoet.

17

6.5. StructureDefinition Class Generation
After initialization, the core processor executes the StructureDefinition class generator once for
each configured StructureDefinition. From the FHIR resources, the attributes to be incorporated
into the class are determined. From the configuration, additional information about nested classes
that need to be generated is also observed here. The collected information is then passed to a code
emitter that controls the actual code generation using JavaPoet.

Due to the complexity of the FHIR model, the entire process is rather complex. The following
diagram only gives a rough overview of the main processes.

18

19

Fhlintstone is used within the development lifecycle of the host project it is used for. It is not
"deployed" in the sense that it requires explicit installation on any dedicated hardware or other
similar resource. For this reason, no deployment documentation has as of yet been deemed
necessary.

20

7. Cross-cutting Concepts
Note: Further information about "low-level" cross-cutting concerns may be found im the separate
developer handbook.

7.1. Automated Tests
As is standard practice today, Fhlintstone also strives for a high level of functional correctness
through extensive automated testing. Three different levels of testing are distinguished.

Unit Tests

Unit tests represent the lowest level of testing and check individual classes in isolation from
their environment. The environment is simulated using a mocking framework (Mockito).

Integration Tests

Integration tests check the behavior of a class in conjunction with the implementations with
which it will be used in the final product. Specially created test data sets are used for this
purpose.

Background: It has become apparent that for many tests it is not feasible to adequately mock the
entire environment of a class. This is especially true for classes that interact directly or indirectly
with the (very complex) HAPI FHIR framework. Here, the effort required to create mocks that
faithfully reproduce the behavior of the framework is very high. At the same time, the probability
of errors in the mocks is high, which means that a lot of time is lost searching for phantom errors.

System Test

Unit tests and integration tests check the behavior of the Fhlintstone application in individual
components. The integration tests extend this by testing the entire application in context and
also testing the generated code. This ensures that not only the code generator runs without
errors, but also that the generated code behaves as expected.

21

8. Architecture Decisions
No formal ADRs have been recorded so far.

22

9. Quality Requirements
No quality requirements beyond those already noted in the introduction have as of yet been
documented.

23

10. Risks and Technical Debts
Known issues, limitations and implementation-level technical debt is tracked using the issue
tracker. The relevant sections in the code are marked with TODO or FIXME comments followed by the
issue number.

Beyond this tracking, no further documentation of risks and technical debt currently exists.

24

https://codeberg.org/Fhlintstone/fhlintstone/issues
https://codeberg.org/Fhlintstone/fhlintstone/issues

11. Glossary
Term Definition Links

CodeSystem The CodeSystem resource is used to declare the
existence of and describe a code system or code
system supplement and its key properties, and
optionally define a part or all of its content. Code
systems define which codes (symbols and/or
expressions) exist, and how they are understood.

Resource CodeSystem -
Content

Differential statement Differential statements are one of two ways to
describe the inner structure of a
StructureDefinition. Differential statements
describe only the differences that they make
relative to the base structure definition. In order
to properly understand a differential structure, it
must be applied to the structure definition on
which it is based.

Base Resource
Definitions

Extension Every element in a Resource can have extension
child elements to represent additional
information that is not part of the basic definition
of the resource. The use of extensions is what
allows the FHIR specification to retain a core
simplicity for everyone. To make the use of
extensions safe and managable, there is strict
governance applied to the definition and use of
extensions. Although any implementer can define
and use extensions, there is a set of requirements
that must be met as part of their use and
definition.

Extensibility

FHIR NPM Package A set of Resources bundled as a machine-readable
archive file. Not to be confused with FHIR
Package.

FHIR NPM Packages

FHIR Package In the context of Profiling, a group of related
adaptations that are published as a group within
an Implementation Guide. Not to be confused with
FHIR NPM Package.

Profiling FHIR

FHIR Profile A set of constraints on a Resource represented as
a StructureDefinition.

Profiling FHIR

HAPI FHIR The HAPI FHIR library is an implementation of
the HL7 FHIR specification for Java.

HAPI FHIR

HL7 FHIR Fast Healthcare Interopatbility Resources (FHIR)
are a standard for health care data exchange,
published by HL7®.

HL7 FHIR

25

https://hl7.org/fhir/codesystem.html
https://hl7.org/fhir/codesystem.html
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://www.hl7.org/fhir/extensibility.html
https://hl7.org/fhir/packages.html
https://hl7.org/fhir/profiling.html
https://hl7.org/fhir/profiling.html
https://github.com/hapifhir
https://hl7.org/fhir/

Term Definition Links

Implementation Guide A coherent and bounded set of adaptations that
are published as a single unit. Validation occurs
within the context of the Implementation Guide.

Profiling FHIR

JavaPoet JavaPoet is a Java API for generating .java`
source files.

JavaPoet (Github)

Mockito Mockito is a mocking framework that provides a
clean & simple API, resulting in readable tests
and clean verification errors.

Mockito

Resource A resource is an entity that has a known identity
by which it can be addressed, identifies itself as
one of the types of resource defined in the HL7
FHIR specification, contains a set of structured
data items as described by the definition of the
resource type and has an identified version that
changes if the contents of the resource change.

Base Resource
Definitions

Snapshot statement Snapshot statements are one of two ways to
describe the inner structure of a
StructureDefinition. Snapshot statements are a
fully calculated form of the structure that is not
dependent on any other structure.

Base Resource
Definitions

StructureDefinition A definition of a FHIR structure. This resource is
used to describe the underlying resources, data
types defined in FHIR, and also for describing
extensions and constraints on resources and data
types.

Resource
StructureDefinition -
Content

ValueSet A ValueSet resource instance specifies a set of
codes drawn from one or more code systems,
intended for use in a particular context. ValueSets
link between CodeSystems definitions and their
use in coded elements.

Resource ValueSet -
Content

26

https://hl7.org/fhir/profiling.html
https://github.com/palantir/javapoet
https://site.mockito.org/
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://hl7.org/fhir/resource.html
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/structuredefinition.html
https://www.hl7.org/fhir/valueset.html
https://www.hl7.org/fhir/valueset.html

	Fhlintstone Architectural Documentation
	Table of Contents
	1. Introduction and Goals
	1.1. Requirements Overview
	1.2. Quality Goals
	1.3. Stakeholders

	2. Architecture Constraints
	3. Context and Scope
	3.1. Business Context
	3.2. Technical Context

	4. Solution Strategy
	4.1. Technology Decisions
	4.2. Top-level Decomposition
	4.3. Quality Goals

	5. Building Block View
	5.1. Whitebox Overall System
	5.2. Level 2
	5.3. Level 3

	6. Runtime View
	6.1. Maven Integration
	6.2. Command Line Execution
	6.3. Core Processor Initialization
	6.4. ValueSet Enum Generation
	6.5. StructureDefinition Class Generation

	7. Cross-cutting Concepts
	7.1. Automated Tests

	8. Architecture Decisions
	9. Quality Requirements
	10. Risks and Technical Debts
	11. Glossary

