org.encog.neural.flat.train.prop
Class TrainFlatNetworkResilient
java.lang.Object
org.encog.neural.flat.train.prop.TrainFlatNetworkProp
org.encog.neural.flat.train.prop.TrainFlatNetworkResilient
- All Implemented Interfaces:
- TrainFlatNetwork
public class TrainFlatNetworkResilient
- extends TrainFlatNetworkProp
Train a flat network using RPROP.
|
Method Summary |
RPROPType |
getRpropType()
|
double[] |
getUpdateValues()
|
void |
initOthers()
Perform training method specific init. |
void |
setRpropType(RPROPType rpropType)
|
double |
updateiWeightMinus(double[] gradients,
double[] lastGradient,
int index)
|
double |
updateiWeightPlus(double[] gradients,
double[] lastGradient,
int index)
|
double |
updateWeight(double[] gradients,
double[] lastGradient,
int index)
Calculate the amount to change the weight by. |
double |
updateWeightMinus(double[] gradients,
double[] lastGradient,
int index)
|
double |
updateWeightPlus(double[] gradients,
double[] lastGradient,
int index)
|
| Methods inherited from class org.encog.neural.flat.train.prop.TrainFlatNetworkProp |
calculateGradients, finishTraining, fixFlatSpot, getError, getErrorFunction, getIteration, getLastGradient, getNetwork, getNumThreads, getTraining, iteration, iteration, learn, learnLimited, report, setErrorFunction, setIteration, setNumThreads |
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
TrainFlatNetworkResilient
public TrainFlatNetworkResilient(FlatNetwork network,
MLDataSet training,
double zeroTolerance,
double initialUpdate,
double maxStep)
- Construct a resilient trainer for flat networks.
- Parameters:
network - The network to train.training - The training data to use.zeroTolerance - How close a number should be to zero to be counted as zero.initialUpdate - The initial update value.maxStep - The maximum step value.
TrainFlatNetworkResilient
public TrainFlatNetworkResilient(FlatNetwork flat,
MLDataSet trainingSet)
- Tran a network using RPROP.
- Parameters:
flat - The network to train.trainingSet - The training data to use.
updateWeight
public double updateWeight(double[] gradients,
double[] lastGradient,
int index)
- Calculate the amount to change the weight by.
- Specified by:
updateWeight in class TrainFlatNetworkProp
- Parameters:
gradients - The gradients.lastGradient - The last gradients.index - The index to update.
- Returns:
- The amount to change the weight by.
updateWeightPlus
public double updateWeightPlus(double[] gradients,
double[] lastGradient,
int index)
updateWeightMinus
public double updateWeightMinus(double[] gradients,
double[] lastGradient,
int index)
updateiWeightPlus
public double updateiWeightPlus(double[] gradients,
double[] lastGradient,
int index)
updateiWeightMinus
public double updateiWeightMinus(double[] gradients,
double[] lastGradient,
int index)
getUpdateValues
public double[] getUpdateValues()
- Returns:
- The RPROP update values.
getRpropType
public RPROPType getRpropType()
- Returns:
- the rpropType
setRpropType
public void setRpropType(RPROPType rpropType)
- Parameters:
rpropType - the rpropType to set
initOthers
public void initOthers()
- Perform training method specific init.
- Specified by:
initOthers in class TrainFlatNetworkProp
Copyright © 2011. All Rights Reserved.