|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use BasicNetwork | |
|---|---|
| org.encog.mathutil.randomize | |
| org.encog.neural.networks | This package contains the neural network machine learning methods. |
| org.encog.neural.networks.layers | |
| org.encog.neural.networks.structure | This package contains classes used to handle the structure of a neural network. |
| org.encog.neural.networks.training.anneal | This package trains neural network using simulated annealing. |
| org.encog.neural.networks.training.concurrent.jobs | This package provides the performers to perform concurrent training jobs. |
| org.encog.neural.networks.training.genetic | This package provides genetic training for neural networks. |
| org.encog.neural.networks.training.lma | This package provides Levenberg Marquardt training for neural networks. |
| org.encog.neural.networks.training.simple | This package provides simple ADALINE training. |
| org.encog.neural.prune | This package contains the classes to prune a neural network. |
| org.encog.neural.som.training.basic | This package implements neighborhood training for the SOM. |
| org.encog.platformspecific.j2se | |
| org.encog.util.benchmark | |
| org.encog.util.simple | |
| Uses of BasicNetwork in org.encog.mathutil.randomize |
|---|
| Methods in org.encog.mathutil.randomize with parameters of type BasicNetwork | |
|---|---|
void |
ConsistentRandomizer.randomize(BasicNetwork network)
Randomize the network. |
void |
NguyenWidrowRandomizer.randomize(BasicNetwork network,
int fromLayer)
Randomize one level of a neural network. |
void |
FanInRandomizer.randomize(BasicNetwork network,
int fromLayer)
Randomize one level of a neural network. |
void |
BasicRandomizer.randomize(BasicNetwork network,
int fromLayer)
Randomize one level of a neural network. |
| Uses of BasicNetwork in org.encog.neural.networks |
|---|
| Methods in org.encog.neural.networks with parameters of type BasicNetwork | |
|---|---|
boolean |
BasicNetwork.equals(BasicNetwork other)
Compare the two neural networks. |
boolean |
BasicNetwork.equals(BasicNetwork other,
int precision)
Determine if this neural network is equal to another. |
| Uses of BasicNetwork in org.encog.neural.networks.layers |
|---|
| Methods in org.encog.neural.networks.layers that return BasicNetwork | |
|---|---|
BasicNetwork |
BasicLayer.getNetwork()
|
BasicNetwork |
Layer.getNetwork()
|
| Methods in org.encog.neural.networks.layers with parameters of type BasicNetwork | |
|---|---|
void |
BasicLayer.setNetwork(BasicNetwork network)
Set the network for this layer. |
void |
Layer.setNetwork(BasicNetwork network)
Set the network that this layer belongs to. |
| Uses of BasicNetwork in org.encog.neural.networks.structure |
|---|
| Methods in org.encog.neural.networks.structure that return BasicNetwork | |
|---|---|
BasicNetwork |
NeuralStructure.getNetwork()
|
| Methods in org.encog.neural.networks.structure with parameters of type BasicNetwork | |
|---|---|
static boolean |
NetworkCODEC.equals(BasicNetwork network1,
BasicNetwork network2)
Determine if the two neural networks are equal. |
static boolean |
NetworkCODEC.equals(BasicNetwork network1,
BasicNetwork network2,
int precision)
Determine if the two neural networks are equal. |
| Constructors in org.encog.neural.networks.structure with parameters of type BasicNetwork | |
|---|---|
AnalyzeNetwork(BasicNetwork network)
Construct a network analyze class. |
|
NeuralStructure(BasicNetwork network)
Construct a structure object for the specified network. |
|
| Uses of BasicNetwork in org.encog.neural.networks.training.anneal |
|---|
| Methods in org.encog.neural.networks.training.anneal that return BasicNetwork | |
|---|---|
BasicNetwork |
NeuralSimulatedAnnealing.getMethod()
Get the current best machine learning method from the training. |
| Constructors in org.encog.neural.networks.training.anneal with parameters of type BasicNetwork | |
|---|---|
NeuralSimulatedAnnealing(BasicNetwork network,
CalculateScore calculateScore,
double startTemp,
double stopTemp,
int cycles)
Construct a simulated annleaing trainer for a feedforward neural network. |
|
| Uses of BasicNetwork in org.encog.neural.networks.training.concurrent.jobs |
|---|
| Methods in org.encog.neural.networks.training.concurrent.jobs that return BasicNetwork | |
|---|---|
BasicNetwork |
TrainingJob.getNetwork()
|
| Methods in org.encog.neural.networks.training.concurrent.jobs with parameters of type BasicNetwork | |
|---|---|
void |
TrainingJob.setNetwork(BasicNetwork network)
|
| Constructors in org.encog.neural.networks.training.concurrent.jobs with parameters of type BasicNetwork | |
|---|---|
BPROPJob(BasicNetwork network,
MLDataSet training,
boolean loadToMemory,
double learningRate,
double momentum)
Construct a job definition for RPROP. |
|
RPROPJob(BasicNetwork network,
MLDataSet training,
boolean loadToMemory)
Construct an RPROP job. |
|
TrainingJob(BasicNetwork network,
MLDataSet training,
boolean loadToMemory)
Construct a training job. |
|
| Uses of BasicNetwork in org.encog.neural.networks.training.genetic |
|---|
| Constructors in org.encog.neural.networks.training.genetic with parameters of type BasicNetwork | |
|---|---|
NeuralGeneticAlgorithm(BasicNetwork network,
Randomizer randomizer,
CalculateScore calculateScore,
int populationSize,
double mutationPercent,
double percentToMate)
Construct a neural genetic algorithm. |
|
NeuralGenome(BasicNetwork network)
Construct a neural genome. |
|
| Uses of BasicNetwork in org.encog.neural.networks.training.lma |
|---|
| Constructors in org.encog.neural.networks.training.lma with parameters of type BasicNetwork | |
|---|---|
LevenbergMarquardtTraining(BasicNetwork network,
MLDataSet training)
Construct the LMA object. |
|
| Uses of BasicNetwork in org.encog.neural.networks.training.simple |
|---|
| Constructors in org.encog.neural.networks.training.simple with parameters of type BasicNetwork | |
|---|---|
TrainAdaline(BasicNetwork network,
MLDataSet training,
double learningRate)
Construct an ADALINE trainer. |
|
| Uses of BasicNetwork in org.encog.neural.prune |
|---|
| Methods in org.encog.neural.prune that return BasicNetwork | |
|---|---|
BasicNetwork |
PruneIncremental.getBestNetwork()
|
BasicNetwork |
PruneSelective.getNetwork()
|
BasicNetwork[] |
PruneIncremental.getTopNetworks()
|
| Methods in org.encog.neural.prune with parameters of type BasicNetwork | |
|---|---|
static String |
PruneIncremental.networkToString(BasicNetwork network)
Format the network as a human readable string that lists the hidden layers. |
| Constructors in org.encog.neural.prune with parameters of type BasicNetwork | |
|---|---|
PruneSelective(BasicNetwork network)
Construct an object prune the neural network. |
|
| Uses of BasicNetwork in org.encog.neural.som.training.basic |
|---|
| Methods in org.encog.neural.som.training.basic that return BasicNetwork | |
|---|---|
BasicNetwork |
BasicTrainSOM.getMethod()
Get the current best machine learning method from the training. |
| Uses of BasicNetwork in org.encog.platformspecific.j2se |
|---|
| Methods in org.encog.platformspecific.j2se with parameters of type BasicNetwork | |
|---|---|
static void |
TrainingDialog.trainDialog(BasicNetwork network,
MLDataSet trainingSet)
Train using SCG and display progress to a dialog box. |
static void |
TrainingDialog.trainDialog(MLTrain train,
BasicNetwork network,
MLDataSet trainingSet)
Train, using the specified training method, display progress to a dialog box. |
| Uses of BasicNetwork in org.encog.util.benchmark |
|---|
| Methods in org.encog.util.benchmark with parameters of type BasicNetwork | |
|---|---|
static int |
Evaluate.evaluateTrain(BasicNetwork network,
MLDataSet training)
Evaluate how long it takes to calculate the error for the network. |
| Uses of BasicNetwork in org.encog.util.simple |
|---|
| Methods in org.encog.util.simple that return BasicNetwork | |
|---|---|
static BasicNetwork |
EncogUtility.simpleFeedForward(int input,
int hidden1,
int hidden2,
int output,
boolean tanh)
Create a simple feedforward neural network. |
| Methods in org.encog.util.simple with parameters of type BasicNetwork | |
|---|---|
static void |
EncogUtility.trainConsole(BasicNetwork network,
MLDataSet trainingSet,
int minutes)
Train the neural network, using SCG training, and output status to the console. |
static void |
EncogUtility.trainConsole(MLTrain train,
BasicNetwork network,
MLDataSet trainingSet,
int minutes)
Train the network, using the specified training algorithm, and send the output to the console. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||