|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use ContainsFlat | |
|---|---|
| org.encog.neural.networks | This package contains the neural network machine learning methods. |
| org.encog.neural.networks.training.propagation | This package provides propagation training for neural networks. |
| org.encog.neural.networks.training.propagation.back | This package provides back propagation training for neural networks. |
| org.encog.neural.networks.training.propagation.manhattan | This package provides Manhattan propagation training for neural networks. |
| org.encog.neural.networks.training.propagation.quick | This package provides back propagation training for neural networks. |
| org.encog.neural.networks.training.propagation.resilient | This package provides resilient propagation training for neural networks. |
| org.encog.neural.networks.training.propagation.scg | This package provides SCG propagation training for neural networks. |
| org.encog.neural.rbf | This package contains classes for RBF networks. |
| org.encog.util | |
| Uses of ContainsFlat in org.encog.neural.networks |
|---|
| Classes in org.encog.neural.networks that implement ContainsFlat | |
|---|---|
class |
BasicNetwork
This class implements a neural network. |
| Uses of ContainsFlat in org.encog.neural.networks.training.propagation |
|---|
| Constructors in org.encog.neural.networks.training.propagation with parameters of type ContainsFlat | |
|---|---|
Propagation(ContainsFlat network,
MLDataSet training)
Construct a propagation object. |
|
| Uses of ContainsFlat in org.encog.neural.networks.training.propagation.back |
|---|
| Constructors in org.encog.neural.networks.training.propagation.back with parameters of type ContainsFlat | |
|---|---|
Backpropagation(ContainsFlat network,
MLDataSet training)
Create a class to train using backpropagation. |
|
Backpropagation(ContainsFlat network,
MLDataSet training,
double learnRate,
double momentum)
|
|
| Uses of ContainsFlat in org.encog.neural.networks.training.propagation.manhattan |
|---|
| Constructors in org.encog.neural.networks.training.propagation.manhattan with parameters of type ContainsFlat | |
|---|---|
ManhattanPropagation(ContainsFlat network,
MLDataSet training,
double learnRate)
Construct a Manhattan propagation training object. |
|
| Uses of ContainsFlat in org.encog.neural.networks.training.propagation.quick |
|---|
| Constructors in org.encog.neural.networks.training.propagation.quick with parameters of type ContainsFlat | |
|---|---|
QuickPropagation(ContainsFlat network,
MLDataSet training)
Construct a QPROP trainer for flat networks. |
|
QuickPropagation(ContainsFlat network,
MLDataSet training,
double learnRate)
Construct a QPROP trainer for flat networks. |
|
| Uses of ContainsFlat in org.encog.neural.networks.training.propagation.resilient |
|---|
| Constructors in org.encog.neural.networks.training.propagation.resilient with parameters of type ContainsFlat | |
|---|---|
ResilientPropagation(ContainsFlat network,
MLDataSet training)
Construct an RPROP trainer, allows an OpenCL device to be specified. |
|
ResilientPropagation(ContainsFlat network,
MLDataSet training,
double initialUpdate,
double maxStep)
Construct a resilient training object, allow the training parameters to be specified. |
|
| Uses of ContainsFlat in org.encog.neural.networks.training.propagation.scg |
|---|
| Constructors in org.encog.neural.networks.training.propagation.scg with parameters of type ContainsFlat | |
|---|---|
ScaledConjugateGradient(ContainsFlat network,
MLDataSet training)
Construct a training class. |
|
| Uses of ContainsFlat in org.encog.neural.rbf |
|---|
| Classes in org.encog.neural.rbf that implement ContainsFlat | |
|---|---|
class |
RBFNetwork
RBF neural network. |
| Uses of ContainsFlat in org.encog.util |
|---|
| Methods in org.encog.util with parameters of type ContainsFlat | |
|---|---|
static void |
EncogValidate.validateNetworkForTraining(ContainsFlat network,
MLDataSet training)
Validate a network for training. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||