org.encog.neural.pattern
Class SVMPattern

java.lang.Object
  extended by org.encog.neural.pattern.SVMPattern
All Implemented Interfaces:
NeuralNetworkPattern

public class SVMPattern
extends Object
implements NeuralNetworkPattern

A pattern to create support vector machines.


Constructor Summary
SVMPattern()
           
 
Method Summary
 void addHiddenLayer(int count)
          Unused, a BAM has no hidden layers.
 void clear()
          Clear any settings on the pattern.
 MLMethod generate()
          Generate the specified neural network.
 int getInputNeurons()
           
 int getOutputNeurons()
           
 boolean isRegression()
           
 void setActivationFunction(ActivationFunction activation)
          Not used, the BAM uses a bipoloar activation function.
 void setInputNeurons(int count)
          Set the number of input neurons.
 void setKernelType(KernelType kernelType)
          Set the kernel type.
 void setOutputNeurons(int count)
          Set the number of output neurons.
 void setRegression(boolean regression)
          Set if regression is used.
 void setSVMType(SVMType svmType)
          Set the SVM type.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

SVMPattern

public SVMPattern()
Method Detail

addHiddenLayer

public final void addHiddenLayer(int count)
Unused, a BAM has no hidden layers.

Specified by:
addHiddenLayer in interface NeuralNetworkPattern
Parameters:
count - Not used.

clear

public final void clear()
Clear any settings on the pattern.

Specified by:
clear in interface NeuralNetworkPattern

generate

public final MLMethod generate()
Description copied from interface: NeuralNetworkPattern
Generate the specified neural network.

Specified by:
generate in interface NeuralNetworkPattern
Returns:
The generated network.

getInputNeurons

public final int getInputNeurons()
Returns:
The input neuron count.

getOutputNeurons

public final int getOutputNeurons()
Returns:
The input output count.

isRegression

public final boolean isRegression()
Returns:
True, if this is regression.

setActivationFunction

public final void setActivationFunction(ActivationFunction activation)
Not used, the BAM uses a bipoloar activation function.

Specified by:
setActivationFunction in interface NeuralNetworkPattern
Parameters:
activation - Not used.

setInputNeurons

public final void setInputNeurons(int count)
Set the number of input neurons.

Specified by:
setInputNeurons in interface NeuralNetworkPattern
Parameters:
count - The number of input neurons.

setKernelType

public final void setKernelType(KernelType kernelType)
Set the kernel type.

Parameters:
kernelType - The kernel type.

setOutputNeurons

public final void setOutputNeurons(int count)
Set the number of output neurons.

Specified by:
setOutputNeurons in interface NeuralNetworkPattern
Parameters:
count - The output neuron count.

setRegression

public final void setRegression(boolean regression)
Set if regression is used.

Parameters:
regression - True if regression is used.

setSVMType

public final void setSVMType(SVMType svmType)
Set the SVM type.

Parameters:
svmType - The SVM type.


Copyright © 2011. All Rights Reserved.