|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.encog.util.simple.EncogUtility
public final class EncogUtility
General utility class for Encog. Provides for some common Encog procedures.
| Method Summary | |
|---|---|
static double |
calculateClassificationError(MLClassification method,
MLDataSet data)
|
static double |
calculateRegressionError(MLRegression method,
MLDataSet data)
|
static void |
convertCSV2Binary(File csvFile,
CSVFormat format,
File binFile,
int[] input,
int[] ideal,
boolean headers)
|
static void |
convertCSV2Binary(File csvFile,
File binFile,
int inputCount,
int outputCount,
boolean headers)
Convert a CSV file to a binary training file. |
static void |
convertCSV2Binary(String csvFile,
String binFile,
int inputCount,
int outputCount,
boolean headers)
Convert a CSV file to a binary training file. |
static void |
evaluate(MLRegression network,
MLDataSet training)
Evaluate the network and display (to the console) the output for every value in the training set. |
static String |
formatNeuralData(MLData data)
Format neural data as a list of numbers. |
static MLDataSet |
loadCSV2Memory(String filename,
int input,
int ideal,
boolean headers,
CSVFormat format,
boolean significance)
Load CSV to memory. |
static MLDataSet |
loadEGB2Memory(File filename)
|
static void |
saveCSV(File targetFile,
CSVFormat format,
MLDataSet set)
|
static void |
saveEGB(File f,
MLDataSet data)
Save a training set to an EGB file. |
static BasicNetwork |
simpleFeedForward(int input,
int hidden1,
int hidden2,
int output,
boolean tanh)
Create a simple feedforward neural network. |
static void |
trainConsole(BasicNetwork network,
MLDataSet trainingSet,
int minutes)
Train the neural network, using SCG training, and output status to the console. |
static void |
trainConsole(MLTrain train,
BasicNetwork network,
MLDataSet trainingSet,
int minutes)
Train the network, using the specified training algorithm, and send the output to the console. |
static void |
trainToError(MLMethod method,
MLDataSet dataSet,
double error)
Train the method, to a specific error, send the output to the console. |
static void |
trainToError(MLTrain train,
double error)
Train to a specific error, using the specified training method, send the output to the console. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Method Detail |
|---|
public static void convertCSV2Binary(File csvFile,
File binFile,
int inputCount,
int outputCount,
boolean headers)
csvFile - The CSV file.binFile - The binary file.inputCount - The number of input values.outputCount - The number of output values.headers - True, if there are headers on the3 CSV.
public static MLDataSet loadCSV2Memory(String filename,
int input,
int ideal,
boolean headers,
CSVFormat format,
boolean significance)
filename - The CSV file to load.input - The input count.ideal - The ideal count.headers - True, if headers are present.format - The loaded dataset.significance - True, if there is a significance column.
public static void evaluate(MLRegression network,
MLDataSet training)
network - The network to evaluate.training - The training set to evaluate.public static String formatNeuralData(MLData data)
data - The neural data to format.
public static BasicNetwork simpleFeedForward(int input,
int hidden1,
int hidden2,
int output,
boolean tanh)
input - The number of input neurons.hidden1 - The number of hidden layer 1 neurons.hidden2 - The number of hidden layer 2 neurons.output - The number of output neurons.tanh - True to use hyperbolic tangent activation function, false to
use the sigmoid activation function.
public static void trainConsole(BasicNetwork network,
MLDataSet trainingSet,
int minutes)
network - The network to train.trainingSet - The training set.minutes - The number of minutes to train for.
public static void trainConsole(MLTrain train,
BasicNetwork network,
MLDataSet trainingSet,
int minutes)
train - The training method to use.network - The network to train.trainingSet - The training set.minutes - The number of minutes to train for.
public static void trainToError(MLMethod method,
MLDataSet dataSet,
double error)
method - The method to train.dataSet - The training set to use.error - The error level to train to.
public static void trainToError(MLTrain train,
double error)
train - The training method.error - The desired error level.public static MLDataSet loadEGB2Memory(File filename)
public static void convertCSV2Binary(String csvFile,
String binFile,
int inputCount,
int outputCount,
boolean headers)
csvFile - The binary file.binFile - The binary file.inputCount - The number of input values.outputCount - The number of output values.headers - True, if there are headers on the CSV.
public static void convertCSV2Binary(File csvFile,
CSVFormat format,
File binFile,
int[] input,
int[] ideal,
boolean headers)
public static double calculateRegressionError(MLRegression method,
MLDataSet data)
public static void saveCSV(File targetFile,
CSVFormat format,
MLDataSet set)
public static double calculateClassificationError(MLClassification method,
MLDataSet data)
public static void saveEGB(File f,
MLDataSet data)
f - data -
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||