Uses of Interface
org.encog.ml.MLRegression

Packages that use MLRegression
org.encog.app.analyst.csv This package contains all of the classes for directly working with CSV files, used by the analyst. 
org.encog.ml This package contains all of the classes for Machine Learning. 
org.encog.ml.svm This package contains all of the classes for support vector machines. 
org.encog.neural.cpn This package contains the classes for CPN networks. 
org.encog.neural.neat   
org.encog.neural.networks This package contains the neural network machine learning methods. 
org.encog.neural.networks.training This package provides training for neural networks. 
org.encog.neural.pnn This package contains the classes for the PNN. 
org.encog.neural.rbf This package contains classes for RBF networks. 
org.encog.neural.thermal This package implements thermal neural networks, such as Hopfield and Boltzmann machines. 
org.encog.util.error   
org.encog.util.simple   
 

Uses of MLRegression in org.encog.app.analyst.csv
 

Methods in org.encog.app.analyst.csv with parameters of type MLRegression
 void AnalystEvaluateRawCSV.process(File outputFile, MLRegression method)
          Process the file.
 

Uses of MLRegression in org.encog.ml
 

Subinterfaces of MLRegression in org.encog.ml
 interface MLAutoAssocation
          Defines a MLMethod that can handle autoassocation.
 

Uses of MLRegression in org.encog.ml.svm
 

Classes in org.encog.ml.svm that implement MLRegression
 class SVM
          This is a network that is backed by one or more Support Vector Machines (SVM).
 

Uses of MLRegression in org.encog.neural.cpn
 

Classes in org.encog.neural.cpn that implement MLRegression
 class CPN
          Counterpropagation Neural Networks (CPN) were developed by Professor Robert Hecht-Nielsen in 1987.
 

Uses of MLRegression in org.encog.neural.neat
 

Classes in org.encog.neural.neat that implement MLRegression
 class NEATNetwork
          Implements a NEAT network as a synapse between two layers.
 

Uses of MLRegression in org.encog.neural.networks
 

Classes in org.encog.neural.networks that implement MLRegression
 class BasicNetwork
          This class implements a neural network.
 

Uses of MLRegression in org.encog.neural.networks.training
 

Methods in org.encog.neural.networks.training with parameters of type MLRegression
 double TrainingSetScore.calculateScore(MLRegression method)
          Calculate the score for the network.
 double CalculateScore.calculateScore(MLRegression network)
          Calculate this network's score.
 

Uses of MLRegression in org.encog.neural.pnn
 

Classes in org.encog.neural.pnn that implement MLRegression
 class BasicPNN
          This class implements either a: Probabilistic Neural Network (PNN) General Regression Neural Network (GRNN) To use a PNN specify an output mode of classification, to make use of a GRNN specify either an output mode of regression or un-supervised autoassociation.
 

Uses of MLRegression in org.encog.neural.rbf
 

Classes in org.encog.neural.rbf that implement MLRegression
 class RBFNetwork
          RBF neural network.
 

Uses of MLRegression in org.encog.neural.thermal
 

Classes in org.encog.neural.thermal that implement MLRegression
 class BoltzmannMachine
          Implements a Boltzmann machine.
 class HopfieldNetwork
          Implements a Hopfield network.
 class ThermalNetwork
          The thermal network forms the base class for Hopfield and Boltzmann machines.
 

Uses of MLRegression in org.encog.util.error
 

Methods in org.encog.util.error with parameters of type MLRegression
static double CalculateRegressionError.calculateError(MLRegression method, MLDataSet data)
           
 

Uses of MLRegression in org.encog.util.simple
 

Methods in org.encog.util.simple with parameters of type MLRegression
static double EncogUtility.calculateRegressionError(MLRegression method, MLDataSet data)
           
static void EncogUtility.evaluate(MLRegression network, MLDataSet training)
          Evaluate the network and display (to the console) the output for every value in the training set.
 



Copyright © 2011. All Rights Reserved.