|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use MLRegression | |
|---|---|
| org.encog.app.analyst.csv | This package contains all of the classes for directly working with CSV files, used by the analyst. |
| org.encog.ml | This package contains all of the classes for Machine Learning. |
| org.encog.ml.svm | This package contains all of the classes for support vector machines. |
| org.encog.neural.cpn | This package contains the classes for CPN networks. |
| org.encog.neural.neat | |
| org.encog.neural.networks | This package contains the neural network machine learning methods. |
| org.encog.neural.networks.training | This package provides training for neural networks. |
| org.encog.neural.pnn | This package contains the classes for the PNN. |
| org.encog.neural.rbf | This package contains classes for RBF networks. |
| org.encog.neural.thermal | This package implements thermal neural networks, such as Hopfield and Boltzmann machines. |
| org.encog.util.error | |
| org.encog.util.simple | |
| Uses of MLRegression in org.encog.app.analyst.csv |
|---|
| Methods in org.encog.app.analyst.csv with parameters of type MLRegression | |
|---|---|
void |
AnalystEvaluateRawCSV.process(File outputFile,
MLRegression method)
Process the file. |
| Uses of MLRegression in org.encog.ml |
|---|
| Subinterfaces of MLRegression in org.encog.ml | |
|---|---|
interface |
MLAutoAssocation
Defines a MLMethod that can handle autoassocation. |
| Uses of MLRegression in org.encog.ml.svm |
|---|
| Classes in org.encog.ml.svm that implement MLRegression | |
|---|---|
class |
SVM
This is a network that is backed by one or more Support Vector Machines (SVM). |
| Uses of MLRegression in org.encog.neural.cpn |
|---|
| Classes in org.encog.neural.cpn that implement MLRegression | |
|---|---|
class |
CPN
Counterpropagation Neural Networks (CPN) were developed by Professor Robert Hecht-Nielsen in 1987. |
| Uses of MLRegression in org.encog.neural.neat |
|---|
| Classes in org.encog.neural.neat that implement MLRegression | |
|---|---|
class |
NEATNetwork
Implements a NEAT network as a synapse between two layers. |
| Uses of MLRegression in org.encog.neural.networks |
|---|
| Classes in org.encog.neural.networks that implement MLRegression | |
|---|---|
class |
BasicNetwork
This class implements a neural network. |
| Uses of MLRegression in org.encog.neural.networks.training |
|---|
| Methods in org.encog.neural.networks.training with parameters of type MLRegression | |
|---|---|
double |
TrainingSetScore.calculateScore(MLRegression method)
Calculate the score for the network. |
double |
CalculateScore.calculateScore(MLRegression network)
Calculate this network's score. |
| Uses of MLRegression in org.encog.neural.pnn |
|---|
| Classes in org.encog.neural.pnn that implement MLRegression | |
|---|---|
class |
BasicPNN
This class implements either a: Probabilistic Neural Network (PNN) General Regression Neural Network (GRNN) To use a PNN specify an output mode of classification, to make use of a GRNN specify either an output mode of regression or un-supervised autoassociation. |
| Uses of MLRegression in org.encog.neural.rbf |
|---|
| Classes in org.encog.neural.rbf that implement MLRegression | |
|---|---|
class |
RBFNetwork
RBF neural network. |
| Uses of MLRegression in org.encog.neural.thermal |
|---|
| Classes in org.encog.neural.thermal that implement MLRegression | |
|---|---|
class |
BoltzmannMachine
Implements a Boltzmann machine. |
class |
HopfieldNetwork
Implements a Hopfield network. |
class |
ThermalNetwork
The thermal network forms the base class for Hopfield and Boltzmann machines. |
| Uses of MLRegression in org.encog.util.error |
|---|
| Methods in org.encog.util.error with parameters of type MLRegression | |
|---|---|
static double |
CalculateRegressionError.calculateError(MLRegression method,
MLDataSet data)
|
| Uses of MLRegression in org.encog.util.simple |
|---|
| Methods in org.encog.util.simple with parameters of type MLRegression | |
|---|---|
static double |
EncogUtility.calculateRegressionError(MLRegression method,
MLDataSet data)
|
static void |
EncogUtility.evaluate(MLRegression network,
MLDataSet training)
Evaluate the network and display (to the console) the output for every value in the training set. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||