|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.encog.ml.BasicML
org.encog.neural.networks.BasicNetwork
public class BasicNetwork
This class implements a neural network. This class works in conjunction the Layer classes. Layers are added to the BasicNetwork to specify the structure of the neural network. The first layer added is the input layer, the final layer added is the output layer. Any layers added between these two layers are the hidden layers. The network structure is stored in the structure member. It is important to call: network.getStructure().finalizeStructure(); Once the neural network has been completely constructed.
| Field Summary | |
|---|---|
static double |
DEFAULT_CONNECTION_LIMIT
The default connection limit. |
static String |
TAG_BEGIN_TRAINING
The property for begin training. |
static String |
TAG_BIAS_ACTIVATION
The property for bias activation. |
static String |
TAG_CONNECTION_LIMIT
The property for connection limit. |
static String |
TAG_CONTEXT_TARGET_OFFSET
The property for context target offset. |
static String |
TAG_CONTEXT_TARGET_SIZE
The property for context target size. |
static String |
TAG_END_TRAINING
The property for end training. |
static String |
TAG_HAS_CONTEXT
The property for has context. |
static String |
TAG_LAYER_CONTEXT_COUNT
The property for layer context count. |
static String |
TAG_LAYER_COUNTS
The property for layer counts. |
static String |
TAG_LAYER_FEED_COUNTS
The property for layer feed counts. |
static String |
TAG_LAYER_INDEX
The property for layer index. |
static String |
TAG_LIMIT
Tag used for the connection limit. |
static String |
TAG_WEIGHT_INDEX
The property for weight index. |
| Constructor Summary | |
|---|---|
BasicNetwork()
Construct an empty neural network. |
|
| Method Summary | |
|---|---|
void |
addLayer(Layer layer)
Add a layer to the neural network. |
void |
addWeight(int fromLayer,
int fromNeuron,
int toNeuron,
double value)
Add to a weight. |
double |
calculateError(MLDataSet data)
Calculate the error for this neural network. |
int |
calculateNeuronCount()
Calculate the total number of neurons in the network across all layers. |
int |
classify(MLData input)
Classify the input into a group. |
void |
clearContext()
Clear any data from any context layers. |
Object |
clone()
Return a clone of this neural network. |
void |
compute(double[] input,
double[] output)
Compute the output for this network. |
MLData |
compute(MLData input)
Compute the output for a given input to the neural network. |
void |
decodeFromArray(double[] encoded)
Decode an array to this object. |
String |
dumpWeights()
|
void |
enableConnection(int fromLayer,
int fromNeuron,
int toNeuron,
boolean enable)
Enable, or disable, a connection. |
int |
encodedArrayLength()
|
void |
encodeToArray(double[] encoded)
Encode the object to the specified array. |
boolean |
equals(BasicNetwork other)
Compare the two neural networks. |
boolean |
equals(BasicNetwork other,
int precision)
Determine if this neural network is equal to another. |
ActivationFunction |
getActivation(int layer)
Get the activation function for the specified layer. |
FlatNetwork |
getFlat()
|
int |
getInputCount()
|
double |
getLayerBiasActivation(int l)
Get the bias activation for the specified layer. |
int |
getLayerCount()
|
int |
getLayerNeuronCount(int l)
Get the neuron count. |
double |
getLayerOutput(int layer,
int neuronNumber)
Get the layer output for the specified neuron. |
int |
getLayerTotalNeuronCount(int l)
Get the total (including bias and context) neuron cont for a layer. |
int |
getOutputCount()
|
NeuralStructure |
getStructure()
|
double |
getWeight(int fromLayer,
int fromNeuron,
int toNeuron)
Get the weight between the two layers. |
int |
hashCode()
Generate a hash code. |
boolean |
isConnected(int layer,
int fromNeuron,
int toNeuron)
Determine if the specified connection is enabled. |
boolean |
isLayerBiased(int l)
Determine if the specified layer is biased. |
void |
reset()
Reset the weight matrix and the bias values. |
void |
reset(int seed)
Reset the weight matrix and the bias values. |
void |
setBiasActivation(double activation)
Sets the bias activation for every layer that supports bias. |
void |
setLayerBiasActivation(int l,
double value)
Set the bias activation for the specified layer. |
void |
setWeight(int fromLayer,
int fromNeuron,
int toNeuron,
double value)
Set the weight between the two specified neurons. |
String |
toString()
|
void |
updateProperties()
Update any objeccts when a property changes. |
void |
validateNeuron(int targetLayer,
int neuron)
Validate the the specified targetLayer and neuron are valid. |
int |
winner(MLData input)
Determine the winner for the specified input. |
| Methods inherited from class org.encog.ml.BasicML |
|---|
getProperties, getPropertyDouble, getPropertyLong, getPropertyString, setProperty, setProperty, setProperty |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, notify, notifyAll, wait, wait, wait |
| Field Detail |
|---|
public static final String TAG_LIMIT
public static final double DEFAULT_CONNECTION_LIMIT
public static final String TAG_CONNECTION_LIMIT
public static final String TAG_BEGIN_TRAINING
public static final String TAG_CONTEXT_TARGET_OFFSET
public static final String TAG_CONTEXT_TARGET_SIZE
public static final String TAG_END_TRAINING
public static final String TAG_HAS_CONTEXT
public static final String TAG_LAYER_COUNTS
public static final String TAG_LAYER_FEED_COUNTS
public static final String TAG_LAYER_INDEX
public static final String TAG_WEIGHT_INDEX
public static final String TAG_BIAS_ACTIVATION
public static final String TAG_LAYER_CONTEXT_COUNT
| Constructor Detail |
|---|
public BasicNetwork()
| Method Detail |
|---|
public final void addLayer(Layer layer)
layer - The layer to be added to the network.
public final void addWeight(int fromLayer,
int fromNeuron,
int toNeuron,
double value)
fromLayer - The from layer.fromNeuron - The from neuron.toNeuron - The to neuron.value - The value to add.public final double calculateError(MLDataSet data)
calculateError in interface MLErrordata - The training set.
public final int calculateNeuronCount()
public final int classify(MLData input)
classify in interface MLClassificationinput - The input data to classify.
public final void clearContext()
clearContext in interface MLContextpublic final Object clone()
clone in class Object
public final void compute(double[] input,
double[] output)
input - The input.output - The output.public final MLData compute(MLData input)
compute in interface MLRegressioninput - The input to the neural network.
public final void decodeFromArray(double[] encoded)
decodeFromArray in interface MLEncodableencoded - The encoded array.public final String dumpWeights()
public final void enableConnection(int fromLayer,
int fromNeuron,
int toNeuron,
boolean enable)
fromLayer - The layer that contains the from neuron.fromNeuron - The source neuron.toNeuron - The target connection.enable - True to enable, false to disable.public final int encodedArrayLength()
encodedArrayLength in interface MLEncodablepublic final void encodeToArray(double[] encoded)
encodeToArray in interface MLEncodableencoded - The array.public final boolean equals(BasicNetwork other)
other - The other neural network.
public final boolean equals(BasicNetwork other,
int precision)
other - The other neural network.precision - The number of decimal places to compare to.
public final ActivationFunction getActivation(int layer)
layer - The layer.
public final FlatNetwork getFlat()
getFlat in interface ContainsFlatpublic final int getInputCount()
getInputCount in interface MLInputpublic final double getLayerBiasActivation(int l)
l - The layer.
public final int getLayerCount()
public final int getLayerNeuronCount(int l)
l - The layer.
public final double getLayerOutput(int layer,
int neuronNumber)
layer - The layer.neuronNumber - The neuron number.
public final int getLayerTotalNeuronCount(int l)
l - The layer.
public final int getOutputCount()
getOutputCount in interface MLOutputpublic final NeuralStructure getStructure()
public final double getWeight(int fromLayer,
int fromNeuron,
int toNeuron)
fromLayer - The from layer.fromNeuron - The from neuron.toNeuron - The to neuron.
public final int hashCode()
hashCode in class Object
public final boolean isConnected(int layer,
int fromNeuron,
int toNeuron)
layer - The layer to check.fromNeuron - The source neuron.toNeuron - THe target neuron.
public final boolean isLayerBiased(int l)
l - The layer number.
public final void reset()
reset in interface MLResettablepublic final void reset(int seed)
reset in interface MLResettableseed - The seed value.public final void setBiasActivation(double activation)
activation - THe new activation.
public final void setLayerBiasActivation(int l,
double value)
l - The layer to use.value - The bias activation.
public final void setWeight(int fromLayer,
int fromNeuron,
int toNeuron,
double value)
fromLayer - The from layer.fromNeuron - The from neuron.toNeuron - The to neuron.value - The to value.public final String toString()
toString in class Objectpublic final void updateProperties()
updateProperties in interface MLPropertiesupdateProperties in class BasicML
public final void validateNeuron(int targetLayer,
int neuron)
targetLayer - The target layer.neuron - The target neuron.public final int winner(MLData input)
input - The input patter to present to the neural network.
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||