org.encog.neural.flat.train.prop
Class TrainFlatNetworkManhattan

java.lang.Object
  extended by org.encog.neural.flat.train.prop.TrainFlatNetworkProp
      extended by org.encog.neural.flat.train.prop.TrainFlatNetworkManhattan
All Implemented Interfaces:
TrainFlatNetwork

public class TrainFlatNetworkManhattan
extends TrainFlatNetworkProp

Train the flat network using Manhattan update rule.


Field Summary
 
Fields inherited from class org.encog.neural.flat.train.prop.TrainFlatNetworkProp
currentError, gradients, lastError, network
 
Constructor Summary
TrainFlatNetworkManhattan(FlatNetwork network, MLDataSet training, double theLearningRate)
          Construct a trainer for flat networks to use the Manhattan update rule.
 
Method Summary
 double getLearningRate()
           
 void initOthers()
          Perform training method specific init.
 void setLearningRate(double theLearningRate)
           
 double updateWeight(double[] gradients, double[] lastGradient, int index)
          Calculate the amount to change the weight by.
 
Methods inherited from class org.encog.neural.flat.train.prop.TrainFlatNetworkProp
calculateGradients, finishTraining, fixFlatSpot, getError, getErrorFunction, getIteration, getLastGradient, getNetwork, getNumThreads, getTraining, iteration, iteration, learn, learnLimited, report, setErrorFunction, setIteration, setNumThreads
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

TrainFlatNetworkManhattan

public TrainFlatNetworkManhattan(FlatNetwork network,
                                 MLDataSet training,
                                 double theLearningRate)
Construct a trainer for flat networks to use the Manhattan update rule.

Parameters:
network - The network to train.
training - The training data to use.
theLearningRate - The learning rate to use.
Method Detail

getLearningRate

public final double getLearningRate()
Returns:
the learningRate

setLearningRate

public final void setLearningRate(double theLearningRate)
Parameters:
theLearningRate - the learningRate to set

updateWeight

public final double updateWeight(double[] gradients,
                                 double[] lastGradient,
                                 int index)
Calculate the amount to change the weight by.

Specified by:
updateWeight in class TrainFlatNetworkProp
Parameters:
gradients - The gradients.
lastGradient - The last gradients.
index - The index to update.
Returns:
The amount to change the weight by.

initOthers

public void initOthers()
Perform training method specific init.

Specified by:
initOthers in class TrainFlatNetworkProp


Copyright © 2011. All Rights Reserved.