org.encog.neural.pnn
Class BasicPNN
java.lang.Object
org.encog.ml.BasicML
org.encog.neural.pnn.AbstractPNN
org.encog.neural.pnn.BasicPNN
- All Implemented Interfaces:
- Serializable, MLInput, MLInputOutput, MLMethod, MLOutput, MLProperties, MLRegression
public class BasicPNN
- extends AbstractPNN
- implements MLRegression
This class implements either a:
Probabilistic Neural Network (PNN)
General Regression Neural Network (GRNN)
To use a PNN specify an output mode of classification, to make use of a GRNN
specify either an output mode of regression or un-supervised autoassociation.
The PNN/GRNN networks are potentially very useful. They share some
similarities with RBF-neural networks and also the Support Vector Machine
(SVM). These network types directly support the use of classification.
The following book was very helpful in implementing PNN/GRNN's in Encog.
Advanced Algorithms for Neural Networks: A C++ Sourcebook
by Timothy Masters, PhD (http://www.timothymasters.info/) John Wiley & Sons
Inc (Computers); April 3, 1995, ISBN: 0471105880
- See Also:
- Serialized Form
| Methods inherited from class org.encog.neural.pnn.AbstractPNN |
getDeriv, getDeriv2, getError, getExclude, getInputCount, getKernel, getOutputCount, getOutputMode, isSeparateClass, isTrained, resetConfusion, setError, setExclude, setSeparateClass, setTrained |
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
BasicPNN
public BasicPNN(PNNKernelType kernel,
PNNOutputMode outmodel,
int inputCount,
int outputCount)
- Construct a BasicPNN network.
- Parameters:
kernel - The kernel to use.outmodel - The output model for this network.inputCount - The number of inputs in this network.outputCount - The number of outputs in this network.
compute
public final MLData compute(MLData input)
- Compute the output from this network.
- Specified by:
compute in interface MLRegression- Specified by:
compute in class AbstractPNN
- Parameters:
input - The input to the network.
- Returns:
- The output from the network.
getCountPer
public final int[] getCountPer()
- Returns:
- the countPer
getPriors
public final double[] getPriors()
- Returns:
- the priors
getSamples
public final BasicMLDataSet getSamples()
- Returns:
- the samples
getSigma
public final double[] getSigma()
- Returns:
- the sigma
setSamples
public final void setSamples(BasicMLDataSet samples)
- Parameters:
samples - the samples to set
updateProperties
public void updateProperties()
- Description copied from interface:
MLProperties
- Update any objeccts when a property changes.
- Specified by:
updateProperties in interface MLProperties- Specified by:
updateProperties in class BasicML
Copyright © 2011. All Rights Reserved.