|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.encog.util.simple.EncogUtility
public final class EncogUtility
General utility class for Encog. Provides for some common Encog procedures.
| Method Summary | |
|---|---|
static double |
calculateClassificationError(MLClassification method,
MLDataSet data)
Calculate the classification error. |
static double |
calculateRegressionError(MLRegression method,
MLDataSet data)
|
static void |
convertCSV2Binary(File csvFile,
CSVFormat format,
File binFile,
int[] input,
int[] ideal,
boolean headers)
|
static void |
convertCSV2Binary(File csvFile,
File binFile,
int inputCount,
int outputCount,
boolean headers)
Convert a CSV file to a binary training file. |
static void |
convertCSV2Binary(String csvFile,
String binFile,
int inputCount,
int outputCount,
boolean headers)
Convert a CSV file to a binary training file. |
static void |
evaluate(MLRegression network,
MLDataSet training)
Evaluate the network and display (to the console) the output for every value in the training set. |
static String |
formatNeuralData(MLData data)
Format neural data as a list of numbers. |
static MLDataSet |
loadCSV2Memory(String filename,
int input,
int ideal,
boolean headers,
CSVFormat format,
boolean significance)
Load CSV to memory. |
static MLDataSet |
loadEGB2Memory(File filename)
|
static void |
saveCSV(File targetFile,
CSVFormat format,
MLDataSet set)
|
static void |
saveEGB(File f,
MLDataSet data)
Save a training set to an EGB file. |
static BasicNetwork |
simpleFeedForward(int input,
int hidden1,
int hidden2,
int output,
boolean tanh)
Create a simple feedforward neural network. |
static void |
trainConsole(BasicNetwork network,
MLDataSet trainingSet,
int minutes)
Train the neural network, using SCG training, and output status to the console. |
static void |
trainConsole(MLTrain train,
BasicNetwork network,
MLDataSet trainingSet,
int minutes)
Train the network, using the specified training algorithm, and send the output to the console. |
static void |
trainToError(MLMethod method,
MLDataSet dataSet,
double error)
Train the method, to a specific error, send the output to the console. |
static void |
trainToError(MLTrain train,
double error)
Train to a specific error, using the specified training method, send the output to the console. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Method Detail |
|---|
public static void convertCSV2Binary(File csvFile,
File binFile,
int inputCount,
int outputCount,
boolean headers)
csvFile - The CSV file.binFile - The binary file.inputCount - The number of input values.outputCount - The number of output values.headers - True, if there are headers on the3 CSV.
public static MLDataSet loadCSV2Memory(String filename,
int input,
int ideal,
boolean headers,
CSVFormat format,
boolean significance)
filename - The CSV file to load.input - The input count.ideal - The ideal count.headers - True, if headers are present.format - The loaded dataset.significance - True, if there is a significance column.
public static void evaluate(MLRegression network,
MLDataSet training)
network - The network to evaluate.training - The training set to evaluate.public static String formatNeuralData(MLData data)
data - The neural data to format.
public static BasicNetwork simpleFeedForward(int input,
int hidden1,
int hidden2,
int output,
boolean tanh)
input - The number of input neurons.hidden1 - The number of hidden layer 1 neurons.hidden2 - The number of hidden layer 2 neurons.output - The number of output neurons.tanh - True to use hyperbolic tangent activation function, false to
use the sigmoid activation function.
public static void trainConsole(BasicNetwork network,
MLDataSet trainingSet,
int minutes)
network - The network to train.trainingSet - The training set.minutes - The number of minutes to train for.
public static void trainConsole(MLTrain train,
BasicNetwork network,
MLDataSet trainingSet,
int minutes)
train - The training method to use.network - The network to train.trainingSet - The training set.minutes - The number of minutes to train for.
public static void trainToError(MLMethod method,
MLDataSet dataSet,
double error)
method - The method to train.dataSet - The training set to use.error - The error level to train to.
public static void trainToError(MLTrain train,
double error)
train - The training method.error - The desired error level.public static MLDataSet loadEGB2Memory(File filename)
public static void convertCSV2Binary(String csvFile,
String binFile,
int inputCount,
int outputCount,
boolean headers)
csvFile - The binary file.binFile - The binary file.inputCount - The number of input values.outputCount - The number of output values.headers - True, if there are headers on the CSV.
public static void convertCSV2Binary(File csvFile,
CSVFormat format,
File binFile,
int[] input,
int[] ideal,
boolean headers)
public static double calculateRegressionError(MLRegression method,
MLDataSet data)
public static void saveCSV(File targetFile,
CSVFormat format,
MLDataSet set)
public static double calculateClassificationError(MLClassification method,
MLDataSet data)
method - The method to check.data - The data to check.
public static void saveEGB(File f,
MLDataSet data)
f - data -
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||