|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.encog.ml.hmm.distributions.DiscreteDistribution
public class DiscreteDistribution
A discrete distribution is a distribution with a finite set of states that it can be in.
| Constructor Summary | |
|---|---|
DiscreteDistribution(double[][] theProbabilities)
Construct a discrete distribution with the specified probabilities. |
|
DiscreteDistribution(int[] cx)
Construct a discrete distribution. |
|
| Method Summary | |
|---|---|
DiscreteDistribution |
clone()
|
void |
fit(MLDataSet co)
Fit this distribution to the specified data. |
void |
fit(MLDataSet co,
double[] weights)
Fit this distribution to the specified data, with weights. |
MLDataPair |
generate()
Generate a random sequence. |
double[][] |
getProbabilities()
|
double |
probability(MLDataPair o)
Determine the probability of the specified data pair. |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public DiscreteDistribution(double[][] theProbabilities)
theProbabilities - The probabilities.public DiscreteDistribution(int[] cx)
cx - The count of each.| Method Detail |
|---|
public DiscreteDistribution clone()
clone in interface StateDistributionclone in class Objectpublic void fit(MLDataSet co)
fit in interface StateDistributionco - THe data to fit to.
public void fit(MLDataSet co,
double[] weights)
fit in interface StateDistributionco - The data to fit to.weights - The weights.public MLDataPair generate()
generate in interface StateDistributionpublic double probability(MLDataPair o)
probability in interface StateDistributiono - THe data pair.
public double[][] getProbabilities()
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||