|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.encog.ml.BasicML
org.encog.neural.pnn.AbstractPNN
org.encog.neural.pnn.BasicPNN
public class BasicPNN
This class implements either a: Probabilistic Neural Network (PNN) General Regression Neural Network (GRNN) To use a PNN specify an output mode of classification, to make use of a GRNN specify either an output mode of regression or un-supervised autoassociation. The PNN/GRNN networks are potentially very useful. They share some similarities with RBF-neural networks and also the Support Vector Machine (SVM). These network types directly support the use of classification. The following book was very helpful in implementing PNN/GRNN's in Encog. Advanced Algorithms for Neural Networks: A C++ Sourcebook by Timothy Masters, PhD (http://www.timothymasters.info/) John Wiley & Sons Inc (Computers); April 3, 1995, ISBN: 0471105880
| Constructor Summary | |
|---|---|
BasicPNN(PNNKernelType kernel,
PNNOutputMode outmodel,
int inputCount,
int outputCount)
Construct a BasicPNN network. |
|
| Method Summary | |
|---|---|
double |
calculateError(MLDataSet data)
Calculate the error of the ML method, given a dataset. |
int |
classify(MLData input)
Classify the input into a group. |
MLData |
compute(MLData input)
Compute the output from this network. |
int[] |
getCountPer()
|
double[] |
getPriors()
|
BasicMLDataSet |
getSamples()
|
double[] |
getSigma()
|
void |
setSamples(BasicMLDataSet samples)
|
void |
updateProperties()
Update any objeccts when a property changes. |
| Methods inherited from class org.encog.neural.pnn.AbstractPNN |
|---|
getDeriv, getDeriv2, getError, getExclude, getInputCount, getKernel, getOutputCount, getOutputMode, isSeparateClass, isTrained, resetConfusion, setError, setExclude, setSeparateClass, setTrained |
| Methods inherited from class org.encog.ml.BasicML |
|---|
getProperties, getPropertyDouble, getPropertyLong, getPropertyString, setProperty, setProperty, setProperty |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface org.encog.ml.MLInput |
|---|
getInputCount |
| Methods inherited from interface org.encog.ml.MLOutput |
|---|
getOutputCount |
| Constructor Detail |
|---|
public BasicPNN(PNNKernelType kernel,
PNNOutputMode outmodel,
int inputCount,
int outputCount)
kernel - The kernel to use.outmodel - The output model for this network.inputCount - The number of inputs in this network.outputCount - The number of outputs in this network.| Method Detail |
|---|
public final MLData compute(MLData input)
compute in interface MLRegressioncompute in class AbstractPNNinput - The input to the network.
public final int[] getCountPer()
public final double[] getPriors()
public final BasicMLDataSet getSamples()
public final double[] getSigma()
public final void setSamples(BasicMLDataSet samples)
samples - the samples to setpublic void updateProperties()
updateProperties in interface MLPropertiesupdateProperties in class BasicMLpublic double calculateError(MLDataSet data)
calculateError in interface MLErrordata - The dataset.
public int classify(MLData input)
classify in interface MLClassificationinput - The input data to classify.
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||