|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.encog.ml.BasicML
org.encog.neural.freeform.FreeformNetwork
public class FreeformNetwork
Implements a freefrom neural network. A freeform neural network can represent much more advanced structures than the flat networks that the Encog BasicNetwork implements. However, while freeform networks are more advanced than the BasicNetwork, they are also much slower. Freeform networks allow just about any neuron to be connected to another neuron. You can have neuron layers if you want, but they are not required.
| Constructor Summary | |
|---|---|
FreeformNetwork()
Default constructor. |
|
FreeformNetwork(BasicNetwork network)
Craete a freeform network from a basic network. |
|
| Method Summary | |
|---|---|
double |
calculateError(MLDataSet data)
Calculate the error of the ML method, given a dataset. |
int |
classify(MLData input)
Classify the input into a group. |
void |
clearContext()
Clear the context. |
Object |
clone()
Return a clone of this neural network. |
MLData |
compute(MLData input)
Compute regression. |
void |
connectLayers(FreeformLayer source,
FreeformLayer target)
Connect two layers. |
void |
ConnectLayers(FreeformLayer source,
FreeformLayer target,
ActivationFunction theActivationFunction)
Connect two layers, assume bias activation of 1.0 and non-recurrent connection. |
void |
connectLayers(FreeformLayer source,
FreeformLayer target,
ActivationFunction theActivationFunction,
double biasActivation,
boolean isRecurrent)
Connect two layers. |
FreeformLayer |
createContext(FreeformLayer source,
FreeformLayer target)
Create a context connection, such as those used by Jordan/Elmann. |
static FreeformNetwork |
createElman(int input,
int hidden1,
int output,
ActivationFunction af)
Construct an Elmann recurrent neural network. |
static FreeformNetwork |
createFeedforward(int input,
int hidden1,
int hidden2,
int output,
ActivationFunction af)
Create a feedforward freeform neural network. |
FreeformLayer |
createInputLayer(int neuronCount)
Create the input layer. |
FreeformLayer |
createLayer(int neuronCount)
Create a hidden layer. |
FreeformLayer |
createOutputLayer(int neuronCount)
Create the output layer. |
void |
decodeFromArray(double[] encoded)
Decode an array to this object. |
int |
encodedArrayLength()
|
void |
encodeToArray(double[] encoded)
Encode the object to the specified array. |
int |
getInputCount()
|
int |
getOutputCount()
|
FreeformLayer |
getOutputLayer()
|
void |
performConnectionTask(ConnectionTask task)
Perform the specified connection task. |
void |
performNeuronTask(NeuronTask task)
Perform the specified neuron task. |
void |
reset()
Reset the weights. |
void |
reset(int seed)
Reset the weights with a seed. |
void |
tempTrainingAllocate(int neuronSize,
int connectionSize)
Allocate temp training space. |
void |
tempTrainingClear()
Clear the temp training data. |
void |
updateContext()
Update context. |
void |
updateProperties()
Update any objeccts when a property changes. |
| Methods inherited from class org.encog.ml.BasicML |
|---|
getProperties, getPropertyDouble, getPropertyLong, getPropertyString, setProperty, setProperty, setProperty |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public FreeformNetwork()
public FreeformNetwork(BasicNetwork network)
network - The basic network to use.| Method Detail |
|---|
public static FreeformNetwork createElman(int input,
int hidden1,
int output,
ActivationFunction af)
input - The input count.hidden1 - The hidden count.output - The output count.af - The activation function.
public static FreeformNetwork createFeedforward(int input,
int hidden1,
int hidden2,
int output,
ActivationFunction af)
input - The input count.hidden1 - The first hidden layer count, zero if none.hidden2 - The second hidden layer count, zero if none.output - The output count.af - The activation function.
public double calculateError(MLDataSet data)
calculateError in interface MLErrordata - The dataset.
public int classify(MLData input)
classify in interface MLClassificationinput - The input data to classify.
public void clearContext()
clearContext in interface MLContextpublic Object clone()
clone in class Objectpublic MLData compute(MLData input)
compute in interface MLRegressioninput - The input data.
public void connectLayers(FreeformLayer source,
FreeformLayer target)
source - The source layer.target - The target layer.
public void connectLayers(FreeformLayer source,
FreeformLayer target,
ActivationFunction theActivationFunction,
double biasActivation,
boolean isRecurrent)
source - The source layer.target - The target layer.theActivationFunction - The activation function to use.biasActivation - The bias activation to use.isRecurrent - True, if this is a recurrent connection.
public void ConnectLayers(FreeformLayer source,
FreeformLayer target,
ActivationFunction theActivationFunction)
source - The source layer.target - The target layer.theActivationFunction - The activation function.
public FreeformLayer createContext(FreeformLayer source,
FreeformLayer target)
source - The source layer.target - The target layer.
public FreeformLayer createInputLayer(int neuronCount)
neuronCount - The input neuron count.
public FreeformLayer createLayer(int neuronCount)
neuronCount - The neuron count.
public FreeformLayer createOutputLayer(int neuronCount)
neuronCount - The neuron count.
public void decodeFromArray(double[] encoded)
decodeFromArray in interface MLEncodableencoded - The encoded array.public int encodedArrayLength()
encodedArrayLength in interface MLEncodablepublic void encodeToArray(double[] encoded)
encodeToArray in interface MLEncodableencoded - The array.public int getInputCount()
getInputCount in interface MLInputpublic int getOutputCount()
getOutputCount in interface MLOutputpublic FreeformLayer getOutputLayer()
public void performConnectionTask(ConnectionTask task)
task - The connection task.public void performNeuronTask(NeuronTask task)
task - public void reset()
reset in interface MLResettablepublic void reset(int seed)
reset in interface MLResettableseed - The seed value.
public void tempTrainingAllocate(int neuronSize,
int connectionSize)
neuronSize - The number of elements to allocate on each neuron.connectionSize - The number of elements to allocate on each connection.public void tempTrainingClear()
public void updateContext()
public void updateProperties()
updateProperties in interface MLPropertiesupdateProperties in class BasicML
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||