org.encog.neural.freeform
public class FreeformNetwork extends BasicML implements MLContext, Cloneable, MLRegression, MLEncodable, MLResettable, MLClassification, MLError
| Constructor and Description |
|---|
FreeformNetwork()
Default constructor.
|
FreeformNetwork(BasicNetwork network)
Craete a freeform network from a basic network.
|
| Modifier and Type | Method and Description |
|---|---|
double |
calculateError(MLDataSet data)
Calculate the error of the ML method, given a dataset.
|
int |
classify(MLData input)
Classify the input into a group.
|
void |
clearContext()
Clear the context.
|
Object |
clone()
Return a clone of this neural network.
|
MLData |
compute(MLData input)
Compute regression.
|
void |
connectLayers(FreeformLayer source,
FreeformLayer target)
Connect two layers.
|
void |
ConnectLayers(FreeformLayer source,
FreeformLayer target,
ActivationFunction theActivationFunction)
Connect two layers, assume bias activation of 1.0 and non-recurrent
connection.
|
void |
connectLayers(FreeformLayer source,
FreeformLayer target,
ActivationFunction theActivationFunction,
double biasActivation,
boolean isRecurrent)
Connect two layers.
|
FreeformLayer |
createContext(FreeformLayer source,
FreeformLayer target)
Create a context connection, such as those used by Jordan/Elmann.
|
static FreeformNetwork |
createElman(int input,
int hidden1,
int output,
ActivationFunction af)
Construct an Elmann recurrent neural network.
|
static FreeformNetwork |
createFeedforward(int input,
int hidden1,
int hidden2,
int output,
ActivationFunction af)
Create a feedforward freeform neural network.
|
FreeformLayer |
createInputLayer(int neuronCount)
Create the input layer.
|
FreeformLayer |
createLayer(int neuronCount)
Create a hidden layer.
|
FreeformLayer |
createOutputLayer(int neuronCount)
Create the output layer.
|
void |
decodeFromArray(double[] encoded)
Decode an array to this object.
|
int |
encodedArrayLength() |
void |
encodeToArray(double[] encoded)
Encode the object to the specified array.
|
int |
getInputCount() |
int |
getOutputCount() |
FreeformLayer |
getOutputLayer() |
void |
performConnectionTask(ConnectionTask task)
Perform the specified connection task.
|
void |
performNeuronTask(NeuronTask task)
Perform the specified neuron task.
|
void |
reset()
Reset the weights.
|
void |
reset(int seed)
Reset the weights with a seed.
|
void |
tempTrainingAllocate(int neuronSize,
int connectionSize)
Allocate temp training space.
|
void |
tempTrainingClear()
Clear the temp training data.
|
void |
updateContext()
Update context.
|
void |
updateProperties()
Update any objeccts when a property changes.
|
getProperties, getPropertyDouble, getPropertyLong, getPropertyString, setProperty, setProperty, setPropertypublic FreeformNetwork()
public FreeformNetwork(BasicNetwork network)
network - The basic network to use.public static FreeformNetwork createElman(int input, int hidden1, int output, ActivationFunction af)
input - The input count.hidden1 - The hidden count.output - The output count.af - The activation function.public static FreeformNetwork createFeedforward(int input, int hidden1, int hidden2, int output, ActivationFunction af)
input - The input count.hidden1 - The first hidden layer count, zero if none.hidden2 - The second hidden layer count, zero if none.output - The output count.af - The activation function.public double calculateError(MLDataSet data)
calculateError in interface MLErrordata - The dataset.public int classify(MLData input)
classify in interface MLClassificationinput - The input data to classify.public void clearContext()
clearContext in interface MLContextpublic Object clone()
public MLData compute(MLData input)
compute in interface MLRegressioninput - The input data.public void connectLayers(FreeformLayer source, FreeformLayer target)
source - The source layer.target - The target layer.public void connectLayers(FreeformLayer source, FreeformLayer target, ActivationFunction theActivationFunction, double biasActivation, boolean isRecurrent)
source - The source layer.target - The target layer.theActivationFunction - The activation function to use.biasActivation - The bias activation to use.isRecurrent - True, if this is a recurrent connection.public void ConnectLayers(FreeformLayer source, FreeformLayer target, ActivationFunction theActivationFunction)
source - The source layer.target - The target layer.theActivationFunction - The activation function.public FreeformLayer createContext(FreeformLayer source, FreeformLayer target)
source - The source layer.target - The target layer.public FreeformLayer createInputLayer(int neuronCount)
neuronCount - The input neuron count.public FreeformLayer createLayer(int neuronCount)
neuronCount - The neuron count.public FreeformLayer createOutputLayer(int neuronCount)
neuronCount - The neuron count.public void decodeFromArray(double[] encoded)
decodeFromArray in interface MLEncodableencoded - The encoded array.public int encodedArrayLength()
encodedArrayLength in interface MLEncodablepublic void encodeToArray(double[] encoded)
encodeToArray in interface MLEncodableencoded - The array.public int getInputCount()
getInputCount in interface MLInputpublic int getOutputCount()
getOutputCount in interface MLOutputpublic FreeformLayer getOutputLayer()
public void performConnectionTask(ConnectionTask task)
task - The connection task.public void performNeuronTask(NeuronTask task)
task - public void reset()
reset in interface MLResettablepublic void reset(int seed)
reset in interface MLResettableseed - The seed value.public void tempTrainingAllocate(int neuronSize,
int connectionSize)
neuronSize - The number of elements to allocate on each neuron.connectionSize - The number of elements to allocate on each connection.public void tempTrainingClear()
public void updateContext()
public void updateProperties()
updateProperties in interface MLPropertiesupdateProperties in class BasicMLCopyright © 2014. All Rights Reserved.