org.encog.neural.freeform.training
public abstract class FreeformPropagationTraining extends BasicTraining implements Serializable
| Modifier and Type | Field and Description |
|---|---|
static double |
FLAT_SPOT_CONST
The constant to use to fix the flat spot problem.
|
| Constructor and Description |
|---|
FreeformPropagationTraining()
Don't use this constructor, it is for serialization only.
|
FreeformPropagationTraining(FreeformNetwork theNetwork,
MLDataSet theTraining)
Construct the trainer.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
canContinue() |
void |
finishTraining()
Should be called after training has completed and the iteration method
will not be called any further.
|
int |
getBatchSize() |
double |
getError() |
TrainingImplementationType |
getImplementationType() |
int |
getIteration() |
MLMethod |
getMethod()
Get the current best machine learning method from the training.
|
MLDataSet |
getTraining() |
boolean |
isFixFlatSopt() |
void |
iteration()
Perform one iteration of training.
|
void |
iteration(int count)
Perform the specified number of training iterations.
|
protected void |
learn()
Learn for the entire network.
|
protected abstract void |
learnConnection(FreeformConnection connection)
Learn for a single connection.
|
protected void |
processBatches()
Process training batches.
|
protected void |
processPureBatch()
Process training for pure batch mode (one single batch).
|
void |
setBatchSize(int batchSize)
Set the batch size.
|
void |
setError(double theError) |
void |
setFixFlatSopt(boolean fixFlatSopt)
Set if we should fix the flat spot problem.
|
void |
setIteration(int iteration)
Set the current training iteration.
|
addStrategy, getStrategies, isTrainingDone, postIteration, preIteration, setTrainingpublic static final double FLAT_SPOT_CONST
public FreeformPropagationTraining()
public FreeformPropagationTraining(FreeformNetwork theNetwork, MLDataSet theTraining)
theNetwork - The network to train.theTraining - The training data.public boolean canContinue()
canContinue in interface MLTrainpublic void finishTraining()
finishTraining in interface MLTrainfinishTraining in class BasicTrainingpublic double getError()
getError in interface MLTraingetError in class BasicTrainingpublic TrainingImplementationType getImplementationType()
getImplementationType in interface MLTraingetImplementationType in class BasicTrainingpublic int getIteration()
getIteration in interface MLTraingetIteration in class BasicTrainingpublic MLMethod getMethod()
public MLDataSet getTraining()
getTraining in interface MLTraingetTraining in class BasicTrainingpublic boolean isFixFlatSopt()
public void iteration()
public void iteration(int count)
iteration in interface MLTrainiteration in class BasicTrainingcount - The number of training iterations.protected void processPureBatch()
protected void processBatches()
protected void learn()
protected abstract void learnConnection(FreeformConnection connection)
connection - The connection to learn from.public void setError(double theError)
setError in interface MLTrainsetError in class BasicTrainingtheError - Set the current error rate. This is usually used by training
strategies.public void setFixFlatSopt(boolean fixFlatSopt)
fixFlatSopt - True, if we should fix the flat spot problem.public void setIteration(int iteration)
setIteration in interface MLTrainsetIteration in class BasicTrainingiteration - the iteration to setpublic int getBatchSize()
public void setBatchSize(int batchSize)
batchSize - The batch size.Copyright © 2014. All Rights Reserved.