org.encog.neural.networks.training.pnn
public class DeriveMinimum extends Object
| Constructor and Description |
|---|
DeriveMinimum() |
| Modifier and Type | Method and Description |
|---|---|
double |
calculate(int maxIterations,
double maxError,
double eps,
double tol,
CalculationCriteria network,
int n,
double[] x,
double ystart,
double[] base,
double[] direc,
double[] g,
double[] h,
double[] deriv2)
Derive the minimum, using a conjugate gradient method.
|
public double calculate(int maxIterations,
double maxError,
double eps,
double tol,
CalculationCriteria network,
int n,
double[] x,
double ystart,
double[] base,
double[] direc,
double[] g,
double[] h,
double[] deriv2)
maxIterations - The max iterations.maxError - Stop at this error rate.eps - The machine's precision.tol - The convergence tolerance.network - The network to get the error from.n - The number of variables.x - The independent variable.ystart - The start for y.base - Work vector, must have n elements.direc - Work vector, must have n elements.g - Work vector, must have n elements.h - Work vector, must have n elements.deriv2 - Work vector, must have n elements.Copyright © 2014. All Rights Reserved.