org.encog.neural.networks.training.propagation.manhattan
public class ManhattanPropagation extends Propagation implements LearningRate
gradients, network| Constructor and Description |
|---|
ManhattanPropagation(ContainsFlat network,
MLDataSet training,
double theLearnRate)
Construct a Manhattan propagation training object.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
canContinue()
This training type does not support training continue.
|
double |
getLearningRate() |
void |
initOthers()
Perform training method specific init.
|
TrainingContinuation |
pause()
This training type does not support training continue.
|
void |
resume(TrainingContinuation state)
This training type does not support training continue.
|
void |
setBatchSize(int theBatchSize)
Do not allow batch sizes other than 0, not supported.
|
void |
setLearningRate(double rate)
Set the learning rate.
|
double |
updateWeight(double[] gradients,
double[] lastGradient,
int index)
Calculate the amount to change the weight by.
|
calculateGradients, finishTraining, fixFlatSpot, getBatchSize, getCurrentFlatNetwork, getLastGradient, getMethod, getThreadCount, iteration, iteration, learn, learnLimited, report, rollIteration, setErrorFunction, setThreadCountaddStrategy, getError, getImplementationType, getIteration, getStrategies, getTraining, isTrainingDone, postIteration, preIteration, setError, setIteration, setTrainingclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaddStrategy, getError, getImplementationType, getIteration, getStrategies, getTraining, isTrainingDone, setError, setIterationpublic ManhattanPropagation(ContainsFlat network, MLDataSet training, double theLearnRate)
network - The network to train.training - The training data to use.theLearnRate - The learning rate.public double getLearningRate()
getLearningRate in interface LearningRatepublic void setLearningRate(double rate)
setLearningRate in interface LearningRaterate - The new learning rate.public boolean canContinue()
canContinue in interface MLTrainpublic TrainingContinuation pause()
public void resume(TrainingContinuation state)
public double updateWeight(double[] gradients,
double[] lastGradient,
int index)
updateWeight in class Propagationgradients - The gradients.lastGradient - The last gradients.index - The index to update.public void initOthers()
initOthers in class Propagationpublic void setBatchSize(int theBatchSize)
setBatchSize in interface BatchSizesetBatchSize in class PropagationtheBatchSize - The batch size.Copyright © 2014. All Rights Reserved.