org.encog.neural.networks.training.propagation.quick
public class QuickPropagation extends Propagation implements LearningRate
| Modifier and Type | Field and Description |
|---|---|
static String |
LAST_GRADIENTS
Continuation tag for the last gradients.
|
gradients, network| Constructor and Description |
|---|
QuickPropagation(ContainsFlat network,
MLDataSet training)
Construct a QPROP trainer for flat networks.
|
QuickPropagation(ContainsFlat network,
MLDataSet training,
double theLearningRate)
Construct a QPROP trainer for flat networks.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
canContinue() |
double[] |
getLastDelta() |
double |
getLearningRate() |
double |
getOutputEpsilon() |
double |
getShrink() |
void |
initOthers()
Perform training method specific init.
|
boolean |
isValidResume(TrainingContinuation state)
Determine if the specified continuation object is valid to resume with.
|
TrainingContinuation |
pause()
Pause the training.
|
void |
resume(TrainingContinuation state)
Resume training.
|
void |
setBatchSize(int theBatchSize)
Do not allow batch sizes other than 0, not supported.
|
void |
setLearningRate(double rate)
Set the learning rate, this is value is essentially a percent.
|
void |
setOutputEpsilon(double theOutputEpsilon) |
void |
setShrink(double s) |
double |
updateWeight(double[] gradients,
double[] lastGradient,
int index)
Update a weight.
|
calculateGradients, finishTraining, fixFlatSpot, getBatchSize, getCurrentFlatNetwork, getLastGradient, getMethod, getThreadCount, iteration, iteration, learn, learnLimited, report, rollIteration, setErrorFunction, setThreadCountaddStrategy, getError, getImplementationType, getIteration, getStrategies, getTraining, isTrainingDone, postIteration, preIteration, setError, setIteration, setTrainingclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaddStrategy, getError, getImplementationType, getIteration, getStrategies, getTraining, isTrainingDone, setError, setIterationpublic static final String LAST_GRADIENTS
public QuickPropagation(ContainsFlat network, MLDataSet training)
network - The network to train.training - The training data.public QuickPropagation(ContainsFlat network, MLDataSet training, double theLearningRate)
network - The network to train.training - The training data.theLearningRate - The learning rate. 2 is a good suggestion as
a learning rate to start with. If it fails to converge,
then drop it. Just like backprop, except QPROP can
take higher learning rates.public boolean canContinue()
canContinue in interface MLTrainpublic double[] getLastDelta()
public double getLearningRate()
getLearningRate in interface LearningRatepublic boolean isValidResume(TrainingContinuation state)
state - The continuation object to check.public TrainingContinuation pause()
public void resume(TrainingContinuation state)
public void setLearningRate(double rate)
setLearningRate in interface LearningRaterate - The learning rate.public double getOutputEpsilon()
public double getShrink()
public void setShrink(double s)
s - the shrink to setpublic void setOutputEpsilon(double theOutputEpsilon)
theOutputEpsilon - the outputEpsilon to setpublic void initOthers()
initOthers in class Propagationpublic double updateWeight(double[] gradients,
double[] lastGradient,
int index)
updateWeight in class Propagationgradients - The gradients.lastGradient - The last gradients.index - The index.public void setBatchSize(int theBatchSize)
setBatchSize in interface BatchSizesetBatchSize in class PropagationtheBatchSize - The batch size.Copyright © 2014. All Rights Reserved.