org.encog.neural.networks.training.propagation.resilient
public class ResilientPropagation extends Propagation
| Modifier and Type | Field and Description |
|---|---|
static String |
LAST_GRADIENTS
Continuation tag for the last gradients.
|
static String |
UPDATE_VALUES
Continuation tag for the last values.
|
gradients, network| Constructor and Description |
|---|
ResilientPropagation(ContainsFlat network,
MLDataSet training)
Construct an RPROP trainer, allows an OpenCL device to be specified.
|
ResilientPropagation(ContainsFlat network,
MLDataSet training,
double initialUpdate,
double maxStep)
Construct a resilient training object, allow the training parameters to
be specified.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
canContinue() |
RPROPType |
getRPROPType() |
double[] |
getUpdateValues() |
void |
initOthers()
Perform training method specific init.
|
boolean |
isValidResume(TrainingContinuation state)
Determine if the specified continuation object is valid to resume with.
|
TrainingContinuation |
pause()
Pause the training.
|
void |
postIteration()
Call the strategies after an iteration.
|
void |
resume(TrainingContinuation state)
Resume training.
|
void |
setRPROPType(RPROPType t)
Set the type of RPROP to use.
|
double |
updateiWeightMinus(double[] gradients,
double[] lastGradient,
int index) |
double |
updateiWeightPlus(double[] gradients,
double[] lastGradient,
int index) |
double |
updateWeight(double[] gradients,
double[] lastGradient,
int index)
Calculate the amount to change the weight by.
|
double |
updateWeightMinus(double[] gradients,
double[] lastGradient,
int index) |
double |
updateWeightPlus(double[] gradients,
double[] lastGradient,
int index) |
calculateGradients, finishTraining, fixFlatSpot, getBatchSize, getCurrentFlatNetwork, getLastGradient, getMethod, getThreadCount, iteration, iteration, learn, learnLimited, report, rollIteration, setBatchSize, setErrorFunction, setThreadCountaddStrategy, getError, getImplementationType, getIteration, getStrategies, getTraining, isTrainingDone, preIteration, setError, setIteration, setTrainingclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaddStrategy, getError, getImplementationType, getIteration, getStrategies, getTraining, isTrainingDone, setError, setIterationpublic static final String LAST_GRADIENTS
public static final String UPDATE_VALUES
public ResilientPropagation(ContainsFlat network, MLDataSet training)
network - The network to train.training - The training data to use.public ResilientPropagation(ContainsFlat network, MLDataSet training, double initialUpdate, double maxStep)
network - The network to train.training - The training set to use.initialUpdate - The initial update values, this is the amount that the deltas
are all initially set to.maxStep - The maximum that a delta can reach.public boolean canContinue()
public boolean isValidResume(TrainingContinuation state)
state - The continuation object to check.public TrainingContinuation pause()
public void resume(TrainingContinuation state)
state - The training state to return to.public void setRPROPType(RPROPType t)
t - The type.public RPROPType getRPROPType()
public void initOthers()
initOthers in class Propagationpublic double updateWeight(double[] gradients,
double[] lastGradient,
int index)
updateWeight in class Propagationgradients - The gradients.lastGradient - The last gradients.index - The index to update.public double updateWeightPlus(double[] gradients,
double[] lastGradient,
int index)
public double updateWeightMinus(double[] gradients,
double[] lastGradient,
int index)
public double updateiWeightPlus(double[] gradients,
double[] lastGradient,
int index)
public double updateiWeightMinus(double[] gradients,
double[] lastGradient,
int index)
public void postIteration()
postIteration in class BasicTrainingpublic double[] getUpdateValues()
Copyright © 2014. All Rights Reserved.