org.encog.neural.pattern
public class SVMPattern extends Object implements NeuralNetworkPattern
| Constructor and Description |
|---|
SVMPattern() |
| Modifier and Type | Method and Description |
|---|---|
void |
addHiddenLayer(int count)
Unused, a BAM has no hidden layers.
|
void |
clear()
Clear any settings on the pattern.
|
MLMethod |
generate()
Generate the specified neural network.
|
int |
getInputNeurons() |
int |
getOutputNeurons() |
boolean |
isRegression() |
void |
setActivationFunction(ActivationFunction activation)
Not used, the BAM uses a bipoloar activation function.
|
void |
setInputNeurons(int count)
Set the number of input neurons.
|
void |
setKernelType(KernelType kernelType)
Set the kernel type.
|
void |
setOutputNeurons(int count)
Set the number of output neurons.
|
void |
setRegression(boolean regression)
Set if regression is used.
|
void |
setSVMType(SVMType svmType)
Set the SVM type.
|
public void addHiddenLayer(int count)
addHiddenLayer in interface NeuralNetworkPatterncount - Not used.public void clear()
clear in interface NeuralNetworkPatternpublic MLMethod generate()
NeuralNetworkPatterngenerate in interface NeuralNetworkPatternpublic int getInputNeurons()
public int getOutputNeurons()
public boolean isRegression()
public void setActivationFunction(ActivationFunction activation)
setActivationFunction in interface NeuralNetworkPatternactivation - Not used.public void setInputNeurons(int count)
setInputNeurons in interface NeuralNetworkPatterncount - The number of input neurons.public void setKernelType(KernelType kernelType)
kernelType - The kernel type.public void setOutputNeurons(int count)
setOutputNeurons in interface NeuralNetworkPatterncount - The output neuron count.public void setRegression(boolean regression)
regression - True if regression is used.public void setSVMType(SVMType svmType)
svmType - The SVM type.Copyright © 2014. All Rights Reserved.